

InfiniBand™ Host Channel Adapter
Verb Implementer’s Guide

March 23, 2003

Revision 1.3
Send Comments To
ashok.raj@intel.com

mailto:ashok.raj@intel.com?subject=VIG

DISCLAIMERS

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Intel® disclaims all liability, including liability for infringement of any proprietary rights, relating to use of
information in this specification. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

The information in this document is furnished for informational use only, is subject to change without notice,
and should not be construed as a commitment by Intel ® Corporation. Intel ® Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that
may be provided in association with this document.

*Third-party brands and names are the property of their respective owners.

Copyright Intel® Corporation 2003

 March 23, 2003

 Verb Implementer’s Guide i

Table of Contents
Table of Contents...i
1. Introduction ..1

1.1. Purpose and Scope ..1
1.2. Intended Audience ...1
1.3. Document Organization ...1
1.4. Conventions..2
1.5. Reference Documents..2
1.6. Commonly Used Acronyms...2
1.7. Definitions and Commonly Used Terms...4
1.8. Revision History ...10

2. Overview ...11
2.1. InfiniBand Overview ...11

2.1.1. Channel Adapters..12
3. Software Architecture Overview ...13
4. Verbs Provider Driver ..14

4.1. Verbs Driver Architecture ..14
4.2. Verb Groups..15
4.3. Byte-Ordering Conventions...15
4.4. Verb Classes ...16

5. Driver Initialization ...19
5.1. Identifying Host Channel Adapter...19
5.2. Initializing the Host Channel Adapter ...21

5.2.1. Memory Management..22
5.3. Address Vector Initialization ...23

5.3.1. Important User Space AVT Considerations ..23
5.4. Event Queue Initialization ..23

5.4.1. Sizing the Event Queue...24
5.5. Setting up Multicast..25

6. Transport Resource Management ..26
6.1. Accessing the HCA...27

6.1.1. OpenHCA..27
6.1.2. QueryHCA ..28
6.1.3. ModifyHCA ...29
6.1.4. CloseHCA...31

6.2. Protection Domain..31
6.2.1. Protection Domain Allocation ..32
6.2.2. Preparing Doorbells for User Mode Access ...32

6.3. Reliable Datagram Domain ..33
6.4. Address Vector Management ..33

6.4.1. Address Handles Allocated in Kernel mode ...33
6.4.2. Managing AV Entries in user mode ...34

6.5. Managing Queue Pairs ...35
6.5.1. Creating Queue Pairs ..36
6.5.2. Modifying QP Attributes ...38
6.5.3. User Mode Interactions when creating a QP ..40

 March 23, 2003

ii Verb Implementer’s Guide

6.5.4. Destroying a QP...40
6.5.5. Important Notes to HCA Driver Writers ...41

6.6. Managing End-To-End Contexts ...42
6.7. Special Queue Pair Management ..42

6.7.1. SMI QP..42
6.7.2. GSI QP ..43
6.7.3. Event Generation...43
6.7.4. Trap Generation...43

6.8. Completion Queue Management...44
6.8.1. Managing CQ for User Mode Access...45
6.8.2. Resize Completion Queue ..46
6.8.3. Destroy Completion Queue ..46

6.9. Multicast ..47
7. Memory Management ..48

7.1.1. Memory Management Verbs...48
7.2. Memory Windows ...53

8. Work Request Processing...55
8.1.1. Posting Work Requests ..56

8.2. Completion Processing..56
8.2.1. Polling Completion Queue..56
8.2.2. Requesting for Completion Notification..57
8.2.3. Important CQ related Notes to Driver Writer...57

8.3. Avoiding Race between Polling and CQ Arming58
9. Interrupt and Event Processing ..59
10. User Mode Support via Plugin ..60

List of Figures
Figure 2-1 InfiniBand Architecture System Area Network... 11
Figure 3-1 InfiniBand Software Architecture.. 13
Figure 4-1 Verbs Driver Architecture... 14
Figure 4-2 Verb groups and relationships ... 16
Figure 5-1 Driver Load sequence.. 20
Figure 5-2 Driver Unload Sequence.. 20
Figure 5-3 Initializing the HCA... 21
Figure 6-1 Resource Management Structures .. 26
Figure 6-2 Generic Resource Management .. 27
Figure 6-3 HCA Handle ... 27
Figure 6-4 Sample HCA Attribute Layout .. 29
Figure 6-5 CloseHCA .. 31
Figure 6-6 PD Handle.. 32
Figure 6-7 RDD Handle ... 33
Figure 6-8 Address Vector Handle .. 34
Figure 6-9 Creating a QP or EE .. 37
Figure 6-10 QP Handle Data-Structure ... 38
Figure 6-11 QP States... 39
Figure 6-12 CQ Handle ... 45
Figure 7-1 Register Memory Region ... 50
Figure 7-2 Register Shared Region... 52
Figure 7-3 Destroy Memory Region .. 53
Figure 8-1 Initial Post Parameters ... 55
Figure 8-2 Post Parameters on Completion .. 55
Figure 8-3 Initial PollCQ Parameters... 57
Figure 8-4 PollCQ Parameters on Completion.. 57

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide iii

Figure 8-5 Poll CQ / Rearm Algorithm.. 58

List of Tables
Table 4-1 Table of Verb Classes and Supported Features... 17
Table 5-1 Sample Device ID Table.. 19
Table 5-2 Initialize HCA Parameters ... 22
Table 5-3 Event Generation Sources .. 25
Table 6-1 Modify HCA Attributes ... 30
Table 6-2 WQE Creation Parameters.. 36
Table 6-3 Extended Asynchronous Events ... 43
Table 10-1 Error Case Handling with user mode Plug-in.. 60

 March 23, 2003

 Verb Implementer’s Guide 1

1. Introduction

1.1. Purpose and Scope
The InfiniBand™ Architecture provides a high performance, low latency and reliable means for
communication among hosts and I/O units attached to a switched, high-speed fabric. In such a system,
the Host Channel Adapters (HCA’s) provide InfiniBand fabric connection to hosts. This specification
describes methods and the mechanisms to manage HCA adapter drivers. This document is only a
guideline on implementing Verbs Drivers and does not specifically target any particular HCA adapter or
Vendor implementations.

1.2. Intended Audience
This specification is intended to guide the development of Software interface for the Verbs Interface
specification. Verbs specifically address the hardware and software interface that abstracts the
hardware component. This allows both Independent Hardware Vendor (IHV) community and Operating
System Vendor (OSV) community, to write software interfaces in a consistent way that does not vary
between hardware vendors or operating systems. This document is intended for HCA driver writers to
implement Verb Interfaces as described in the SourceForge open source implementation for Linux™.

The reader is expected to be familiar with the InfiniBand Architecture. Deeper knowledge of the
InfiniBand Architecture Specification Volume 1, Release 1.1, and associated annexes are necessary to
understand some sections of this document. A HCA vendor must pay particular attention to the
compliance statements in Chapters 10, Chapter 11 and Chapter 17 in order to implement verbs
behavior in a consistent manner.

The reader is also expected to be familiar with operating system concepts that would enhance the
understanding and proper mapping of the functions as appropriate to a specific OS. In most cases as
applicable we will provide references to Linux Operating system interfaces as an example.

1.3. Document Organization
This document is structures as follows.

• Chapter 2 provides a brief overview of InfiniBand Architecture, and explains the role of HCA’s in
this architecture.

• Chapter 3 provides a brief overview of the software architecture, and explains the different roles
that each module supports.

• Chapter 4 describes the available verbs as specified in the InfiniBand Architecture, Volume
1.0.a of the specifications, their relationships.

• Chapter 5 describes initialization and shutdown procedures.
• Chapter 6 describes the transport resource management, which covers QP, CQ, AV, PD, RDD

allocation and management.
• Chapter 7 describes methods for managing VPTT and registration resources.
• Chapter 8 explains the work request processing, and completion processing methods.
• Chapter 9 describes the interrupt handling and event processing.
• Chapter 10 describes methods of supporting mandatory agents such as Subnet Management

Agent (SMA) in the Channel Interface (CI).

 March 23, 2003

2 Verb Implementer’s Guide

1.4. Conventions
This document uses the following conventions:

Acronyms: The first time an acronym is used; it is enclosed in parentheses and preceded by the
phrase it represents in italics. An example is a Three Letter Acronym (TLA).

Data Format: All multi-byte data fields defined by the InfiniBand™ Architecture are in big-endian byte
order. All values are decimal unless preceded by “0x” signifying that the value is in hexadecimal
notation, or “0b” signifying that the value is in binary notation.

References: Reference documents and their associated shortened reference tags (e.g., [IBA Vol1])
are specified in Section 1.5

Cross-references: Cross-references are used liberally through out this document to assist in online
reviewing. Most references to figures, tables, sections and acronyms are provided with cross-
references to take the reader to the interest area quickly. Cross-references are indicated by blue
underlined text.

Byte Ordering: The data structures shared with software are specified in increasing byte order is first
from right to left, and than from top to bottom. However, in figures in which arrays of data structures are
depicted, the increasing byte order is first right to left, and than from bottom to top.

Discrepancies: In writing of this document we made every effort to provide accurate and consistent
information. However, when discrepancies exist between figures and text, then the figures must be
considered as correct.

1.5. Reference Documents
[IBA Vol1] InfiniBand Architecture Specification, Volume 1, Release 1.X
[IBA Vol2] InfiniBand Architecture Specification, Volume 2, Release 1.X

For more details and to obtain a copy of most recent documents, please visit
http://infiniband.sourceforge.net

The source can be obtained from http://infiniband.bkbits.net

1.6. Commonly Used Acronyms
AETH ACK Extended Transport Header
B_Key Baseboard Management Key
BTH Base Transport Header
CI Channel Interface
CQ Completion Queue
CQE Completion Queue Element
CRC Cyclic Redundancy Check
DETH Datagram Extended Transport Header
DGID Destination Globally Unique Identifier
DLID Destination Local Identifier
EEC End-to-End Context
EQ Event Queue
EQE Event Queue Element
GID Global Identifier

 March 23, 2003 Intel Corporation

http://infiniband.sourceforge.net/
http://infiniband.bkbits.net/

 Verb Implementer’s Guide 3

GMP General Management Packet
GRH Global Route Header
GSI General Service Interface
DMA Direct Memory Access
SMP Sub-net Management Packet
GMP General Services Management Packet
GUID Globally Unique Identifier
HCA Host Channel Adapter
IBA InfiniBand Architecture
ICRC Invariant CRC
IHV Independent Hardware Vendor
IPv6 Internet Protocol, version 6
IOC I/O Controller
L_Key Local Key
LID Local Identifier
LMC LID Mask Control
LRH Local Route Header
M_Key Management Key
MAD Management Datagram
MSN Message Sequence Number
MTU Maximum Transfer Unit
P_Key Partition Key
PD Protection Domain
PSN Packet Sequence Number
Q_Key Queue Key
QoS Quality of Service
QP Queue Pair
R_Key Remote Key
RC Reliable Connection
RD Reliable Datagram
RDETH Reliable Datagram Extended Transport Header
RDMA Remote Direct Memory Access
SGID Source Global Identifier
SLID Source Local Identifier
SL Service Level
SM Subnet Manager
SMA Subnet Management Agent
SMP Subnet Management Packet
TCA Target Channel Adapter
UC Unreliable Connection
UD Unreliable Datagram
VCRC Variant CRC
VL Virtual Lane
WC Work Completion
WQ Work Queue
WQE Work Queue Element
WQP Work Queue Pair
WR Work Request

 March 23, 2003

4 Verb Implementer’s Guide

1.7. Definitions and Commonly Used Terms
Address Vector
A collection of address and path information specifying a remote port and the parameters to be used
when communicating with it.

Automatic Path Migration
The process in which a Channel Adapter, on a per-Queue Pair basis, signals another CA to cause Path
Migration to a preset alternate Path. Automatic Path Migration uses a bit in a request or response
packet (MigReq) to signal the other channel adapter to migrate to the predefined alternate path.

Base LID
The numerically lowest Local Identifier that refers to a Port. The Path Bits of a Base LID are always
zero.

Binding
The act of associating a virtual address range in a specified Memory Region with a Memory Window.

Channel
The abstraction represented by a queue pair on each of two InfiniBand nodes such that a message
placed on the send queue of one node arrives at the receive queue of the other.

Channel Adapter
Device that terminates a link and executes transport-level functions. One of Host Channel Adapter or
Target Channel Adapter.

Channel Interface
The presentation of the channel to the Verbs Consumer as implemented through the combination of the
Host Channel Adapter, associated firmware, and device driver software.

Completion Error
Permanent interface or processing error reported through completion status.

Completion Queue
A queue containing one or more Completion Queue Entries. Completion Queues are internal to the
Channel Interface, and are not visible to verb consumers.

Completion Queue Entry
The Channel Interface-internal representation of a Work Completion.

Connection
An association between a pair of entities (e.g., processes) over one or more Channels.

Data Payload
The data, not including any control or header information, carried in one packet.

Data Segment
A tuple in a Work Request that specifies a virtually contiguous buffer for Host Channel Adapter access.
Each Data Segment consists of a Virtual Address, an associated Local Key or Remote Key, and a
length.

End to End Context
The endpoint of a Reliable Datagram channel.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 5

End to End Flow Control
A mechanism to prevent a sender from transmitting messages during periods when receive buffers are
not posted at the recipient.

Fabric
The collection of Links, Switches, and Routers that connects a set of Channel Adapters.

General Service Interface
An interface providing management services (e.g., connection, performance, diagnostics) other than
subnet management.

Global Identifier
A 128-bit identifier used to identify a port on a channel adapter, a port on a router, or a multicast group.
GID’s are valid 128-bit IPv6 addresses (per RFC 2373) with additional properties / restrictions defined
within IBA to facilitate efficient discovery, communication, and routing.

Global Route Header
Routing header present in InfiniBand TM Architecture packets targeted to destinations outside the
sender’s local subnet.

Globally Unique Identifier
A number that uniquely identifies a device or component.

Host
One or more Host Channel Adapters governed by a single memory/CPU complex.

Host Channel Adapter
A Channel Adapter that supports the Verbs interface.

Immediate Data
Data contained in a Work Queue Element that is sent along with the payload to the remote Channel
Adapter and placed in a Receive Work Completion.

Invariant CRC
A CRC covering the fields in a packet that do not change from the source to the destination.

I/O Controller
One of the two architectural divisions of an I/O Unit. An I/O controller (IOC) provides I/O services, while
a Target Channel Adapter provides transport services.

I/O Unit
An I/O unit (IOU) provides I/O service(s). An I/O unit consists of one or more I/O Controllers attached to
the fabric through a single Target Channel Adapter.

IPv6 Address
A 128-bit address constructed in accordance with IETF RFC 2460 for IPv6.

LID Mask Control
A per-port value assigned by the Subnet Manager. The value of the LMC specifies the number of Path
Bits in the Local Identifier.

Link
A full duplex transmission path between any two fabric elements, such as Channel Adapters or
Switches.

 March 23, 2003

6 Verb Implementer’s Guide

Local Identifier
An address assigned to a port by the Subnet Manager, unique within the subnet, used for directing
packets within the subnet. The Source and Destination LIDs are present in the Local Route Header. A
Local Identifier is formed by the sum of the Base LID and the value of the Path Bits.

Local Key
An opaque object, created by a verb, referring to a Memory Registration, used with a Virtual Address to
describe authorization for the HCA hardware to access local memory. It may also be used by the HCA
hardware to identify the appropriate page tables for use in translating virtual to physical addresses.

Local Route Header
Routing header present in all InfiniBand Architecture packets, used for routing through switches within a
subnet.

Management Datagram
Refers to the contents of an Unreliable Datagram packet used for communication among HCAs,
switches, routers, and TCA’s to manage the fabric. InfiniBand Architecture describes the format of a
number of these management commands.

Management Key
A construct that is contained in IBA management datagrams to authenticate the sender to the receiver.

Memory Region
A virtually contiguous area of arbitrary size within a Consumer’s address space that has been
registered, enabling HCA local access and optional remote access.

Memory Registration
The act of registering a host Memory Registration for use by a consumer. The memory registration
operation returns a Memory Region Handle. The process provides this with any reference to a virtual
address within the memory region.

Memory Window
An allocated resource that enables remote access after being bound to a specified area within an
existing Memory Registration. Each Memory Window has an associated Window Handle, set of access
privileges, and current R_Key.

Message
A transfer of information between two or more Channel Adapters that consists of one or more packets.

Multicast
A facility by which a packet sent to a single address may be delivered to multiple ports.

Multicast Identifier
An identifier for a set of ports making up a Multicast Group, typically belonging to different Channel
Adapters. On a subnet, Multicast Identifiers share the address space of Local Identifiers.

Multicast Group
A collection of Channel Adapter ports that receive Multicast packets sent to a single address.

Packet
The indivisible unit of IBA data transfer and routing, consisting of one or more headers, a Packet
Payload, and one or two CRC’s.

Packet Payload
The portion of a Packet between (not including) any Transport header(s) and the CRCs at the end of
each packet. The packet payload contains up to 4096 bytes.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 7

Packet Sequence Number
A value carried in the Base Transport Header that allows the detection and re-sending of lost packets.

Partition
A collection of Channel Adapter ports that are allowed to communicate with one another. Ports may be
members of multiple partitions simultaneously. Ports in different partitions are unaware of each other’s
presence insofar as possible.

Partition Key Table
A table of partition keys present in each Port.

Path
The collection of links, switches, and routers a message traverses from a source Channel Adapter to a
destination channel adapter. Within a subnet, a path is defined by the tuple <SLID, DLID, SL>.

Path Bits
The portion of a Local Identifier that may be changed to vary the Path through the subnet to a particular
Port. If the Path Bits are zero, the Local Identifier is equal to the Base LID. The Subnet Manager
through the LID Mask Control value specifies the number of Path Bits applicable to a particular port.

Path Maximum Transfer Unit
The maximum size of the Packet Payload supported along a Path from source to destination. PMTU is
described in terms of the payload size, and may be 256, 512, 1024, 2048, or 4096 bytes.

Port
Location on a Channel Adapter or Switch to which a link connects. There may be multiple ports on a
single Channel Adapter, each with different context information that must be maintained.
Switches/switch elements contain more than one port by definition.

Protection Domain
A mechanism for associating Queue Pairs, Address Handles, Memory Windows, and Memory
Registrations.

Queue Key
A construct that is used to validate a remote sender’s right to access a local Receive Queue for the
Unreliable Datagram and Reliable Datagram service types. If the Q_Key present in an incoming packet
does not match the value stored in the receiving QP, the packet shall be dropped.

Queue Pair
Consists of a Send Work Queue and a Receive Work Queue. Send and receive queues are always
created as a pair and remain that way throughout their lifetime. Its Queue Pair Number identifies the
Queue Pair.

Raw Datagram
A packet that contains an IBA Local Route Header, may contain an IBA Global Route Header, but does
not contain an IBA Transport header, and is not handled by IBA transport services.

Receive Queue
One of the two queues associated with a Queue Pair. The receive queue contains Work Queue
Elements that describe where to place incoming data.

Reliable Connection
A Transport Service Type in which a Queue Pair is associated with only one other QP, such that
messages transmitted by the send queue of one QP are reliably delivered to receive queue of the other
QP. As such, each QP is said to be “connected” to the opposite QP.

 March 23, 2003

8 Verb Implementer’s Guide

Reliable Datagram
A Transport Service Type in which a Queue Pair may communicate with multiple other QPs over a
Reliable Datagram Channel. A message transmitted by an RD QP’s send queue will be reliably
delivered to the receive queue of the QP specified in the associated Work Request. Despite the name,
Reliable Datagram messages are not limited to a single packet.

Reliable Datagram Domain
An association that defines which Reliable Datagram Queue Pairs may use an End to End Context.

Remote Direct Memory
Access Method of accessing memory on a remote system without interrupting the processing of the
CPU(s) on that system.

Remote Key
An opaque object, created by a verb, referring to a Memory Registration or Memory Window, used with
a Virtual Address to describe authorization for the remote device to access local memory. It may also
be used by the HCA hardware to identify the appropriate page tables for use in translating virtual to
physical addresses.

RNR Nak
Receiver Not Ready. A response signifying that the receiver is not currently able to accept the request,
but may be able to do so in the future.

Router
A device that transports packets between IBA subnets.

Send Queue
One of the two queues of a Queue Pair. The Send queue contains WQE’s that describe the data to be
transmitted.

Service Level
Value in the Local Route Header identifying the appropriate Virtual Lane for a packet, enabling the
implementation of differentiated services. While the appropriate VL for a specific Service Level may
differ over a packet’s Path, the Service Level remains constant.

Signaled Completion
A modifier used for Work Requests submitted to the Send Queue specifying that a Work Completion
shall be generated when the work requested completes, whether successfully or in error.

Solicited Event
A facility by which a message sender may cause an event to be generated at the recipient when the
message is received.

Subnet
A set of InfiniBand Architecture Ports, and associated links, that have a common Subnet ID and are
managed by a common Subnet Manager. Subnets may be connected to each other through routers.

Subnet Management Agent
An entity present in all IBA Channel Adapters and Switches that processes Subnet Management
Packets from Subnet Manager(s).

Subnet Management Packet
The subclass of Management Data-grams used to manage the subnet. SMPs travel exclusively over
Virtual Lane 15 and are addressed exclusively to Queue Pair Number 0.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 9

Switch
A device that routes packets from one link to another of the same subnet, using the Destination Local
Identifier field in the Local Route Header.

Target Channel Adapter
A Channel Adapter typically used to support I/O devices. TCA’s are not required to support the Verbs
interface.

Transport Service Type
Describes the reliability, sequencing, message size, and operation types that will be used between the
communicating Channel Adapters.

Unicast
An identifier for a single port. A packet sent to a unicast address is delivered to the port identified by
that address.

Unit
One or more sets of processes and/or functions attached to the fabric by one or more channel
adapters.

Unreliable Connection
A Transport Service Type in which a Queue Pair is associated with only one other QP, such that
messages transmitted by the send queue of one QP are, if delivered, delivered to the receive queue of
the other QP. As such, each QP is said to be “connected” to the opposite QP. Messages with errors are
not retried by the transport, and error handling must be provided by a higher level protocol.

Unreliable Datagram
A Transport Service Type in which a Queue Pair may transmit and receive single-packet messages
to/from any other QP. Ordering and delivery are not guaranteed, and the receiver may drop delivered
packets.

Un-signaled Completion
A modifier used for Work Requests submitted to the Send Queue signifying that a Work Completion is
to be generated only if the requested action completes in error.

Variant CRC
A CRC covering all the fields of a packet, including those that may be changed by Switches.

Verbs
An abstract description of the functionality of a Host Channel Adapter. An operating system may
expose some or all of the verb functionality through its programming interface.

Virtual Lane
A method of providing independent data streams on the same physical link.

Work Completion
The consumer-visible representation of a Completion Queue Entry. A Work Completion may be
obtained when a consumer polls a Completion Queue.

Work Queue
Refers to one of Send Queue or Receive Queue.

Work Queue Element
The Host Channel Adapter’s, internal representation of a Work Request. The consumer does not have
direct access to Work Queue Elements.

 March 23, 2003

10 Verb Implementer’s Guide

Work Request
The means by which, a consumer requests the creation of a Work Queue Element.

1.8. Revision History
Revision Date Description
Revision 1 July 18, 2002 Changes to make the document vendor neutral.
Final Draft August 16, 2002 Incorporated feedback
Revision 1.1 September 6, 2002 Adding usage guidelines for SMI and Traps,

based on feedback from Mellanox
Revision 1.2 December 24, 2002 Added note on Byte Ordering Conventions
Revision 1.3 March 23rd, 2003 Added information on Callbacks, user mode

support notes for passing private HCA
attributes.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 11

2. Overview
The first part of the chapter provides a brief overview of the InfiniBand architecture based systems,
identifies elements of the architecture and provides a reference to available specifications to the reader.
The second part details the software interface that glues the HCA with system software in an operating
system environment.

2.1. InfiniBand Overview
Figure 2-1 below depicts elements of InfiniBand Architecture (IBA) System Area Network (SAN). In
small configurations, a processor node can be connected to I/O nodes directly. However, in large
System Area Networks many processor and I/O nodes can be interconnected over a fabric.

IO
Chassis

IO
 M

od
ul

e
TC

A

IO
 M

od
ul

e
TC

A

IO
 M

od
ul

e
TC

A

IO
 M

od
ul

e
TC

A

IO
 M

od
ul

e
TC

A

...

IO
Chassis

IO
 M

od
ul

e
TC

A

IO
 M

od
ul

e
TC

A

IO
 M

od
ul

e
TC

A

IO
 M

od
ul

e
TC

A

IO
 M

od
ul

e
TC

A

...

Switch Switch Switch

Switch Switch

Switch Switch

Router

Consoles

Processor Node
CPU CPU ... CPU

Mem HCA

Processor Node
CPU CPU ... CPU

Mem HCAHCA

Processor Node
CPU CPU ... CPU

Mem HCAHCA

RAID Subsystem

SCSI

SCSI

SCSI

SCSI

SCSI

Mem

TCA

µP

Storage Storage
Subsystem

TCA

Controller

Fabric (Subnet)

Other IB Subnets,
WANs, LANs,
Processor Nodes

Video
Graphics

SCSI
Ethernet FC hubs &

FC devices

Figure 2-1 InfiniBand Architecture System Area Network

An IBA system can range from a small server with one processor and a few I/O devices to a massively
parallel supercomputer installation with hundreds of processors and thousands of I/O devices. In small
configurations, a processor node may be connected to I/O nodes directly. However, in large SAN's
many processor and I/O nodes can be interconnected over a fabric. Furthermore, the Internet Protocol
(IP) friendly nature of IBA allows bridging to an Internet, intranet, or connection to remote computer
systems.

IBA defines a switched communications fabric allowing many devices to concurrently communicate with
high bandwidth and low latency in a protected, remotely managed environment. An end node can
communicate over multiple IBA ports and can utilize multiple paths through the IBA fabric. The
potential redundancy of IBA ports and paths through the network are exploited for both fault tolerance
and increased data transfer bandwidth.

 March 23, 2003

12 Verb Implementer’s Guide

The components of an IBA system described later in this section are:

• Channel Adapters
• Switches
• Routers
• Repeaters
• Links that interconnect switches, routers, repeaters and channel adapters

The basic interconnect of the InfiniBand Architecture is a link, which is a full-duplex transmission path
between any two fabric elements. A link physically terminates at a port. The physical attach point to a
port is either:

• A Copper Cable Connector, defined for use with a wired connection referred to as a copper
cable throughout this document.

• A Fiber Optic Connector, which is defined for use with optical cables and signal converters.
• An IB Module, which is defined for use with a back-plane connector, which includes board-to-

board and chip-to-chip connections.

The InfiniBand specifications define three electrical interface widths as follows:

• 1X (2 differential pair, one per direction, for a total of 4 wires)
• 4X (8 differential pair, four per direction, for a total of 16 wires)
• 12X (24 differential pair, 12 per direction, for a total of 48 wires)

2.1.1. Channel Adapters

Channel adapters are the components in processor nodes and I/O units that generate and consume
packets. The IBA defines two types of channel adapters: Host Channel Adapter (HCA) and Target
Channel Adapter (TCA).

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 13

3. Software Architecture Overview
Figure below shows a very high level overview of the software architecture of InfiniBand Software. This
figure does not explain all the different subcomponents of the architecture. For a more detailed
overview of the software architecture, please refer to the Software Architecture Specification (SAS)
document.

InfiniBand Access Layer

SMA GSA

Verbs Provider Driver

Kernel Mode Drivers

User Mode InfiniBand Access Layer

User Mode Verbs
Library

User Mode

Kernel Mode

SMA - Subnet Management Agent
GSA - General Services Agent

Figure 3-1 InfiniBand Software Architecture

This specification highlights the Verbs Provider Driver (VPD) and its sub-components. As shown above
in Figure 3-1, the VPD interfaces with the InfiniBand Access Layer (AL). AL manages multiple adapters
and different CA vendor devices, whereas VPD manages multiple instances of adapters, typically from
a same manufacturer or hardware vendor. Verbs can be viewed as the software glue to the Operating
System (OS). InfiniBand specifications also refer to a Channel Interface (CI), which is the combination
of the VPD and the adapter hardware to provide the transport functionality.

The VPD serves the following primary functions.

• Manage multiple instances of CA’s and the adapter’s internal resources
• Interfaces with the OS to obtain resources necessary to function, such as device identification,

and interrupt registration.
• Provides the Verbs API as exposed to the IAL.
• Provides functionality for mandatory agents such as Subnet Management Agent (SMA) and

General Services Agent (GSA).

 March 23, 2003

14 Verb Implementer’s Guide

4. Verbs Provider Driver
Verbs Provider Driver is responsible for the component identification, initialization and registration with
the OS to obtain kernel mode resources. Once VPD has initialized the component and ready for use, it
then notifies the IB Access Layer to notify the arrival of a new HCA. Linux architecture typically uses a
registration call to achieve this process. For e.g. the SCSI HBA drivers would use scsi_register () call.
Linux IB Access Layer exports such an interface to allow low-level drivers to register HCA devices
identified in the system. The HCA would typically identify itself via the PCI configuration space. This
allows the driver to identify all instances of the component via standard device discovery mechanisms.
In this case the VPD would use standard pci_register_driver () call to identify existing devices.

4.1. Verbs Driver Architecture
The Verbs driver manages several CA resources such as QP’s, CQ’s, AV’s and PD’s Most CA’s are
expected to have a large number of these resources. So it is important to efficiently utilize and manage
their allocation and use in the driver.

QP Management

CQ Management

AV Management

PD Management

RDD Management

R
es

ou
rc

e
M

an
ag

em
en

t TPT Management

Core Linux Kernel

HCA Device
Management

Completion/Error
Processing

Channel Interface

Figure 4-1 Verbs Driver Architecture

The figure above provides a brief view of what functions exist in the drivers. The salient functional
pieces are described below.

• Resource Management – Manages allocation of unallocated resources. A generic scheme is
suggested later in this guide, which allows managing multiple types of resources.

• Memory management – InfiniBand architecture requires true virtual to physical mapping without
involving the host CPU. Memory management schemes available in the HCA make such
translations possible.

• HCA device Management – This refers to managing multiple host adapters available in a
system and the management of the adapters themselves.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 15

• Completion and error processing – This refers to the interrupt handling and event queue
management. Processing completion events, identifying the right context associated with the
resource necessary to perform the notification.

• Special QP management – Verbs also has to support certain mandatory agents necessary to
support the QP0 and QP1 QPs as described in the InfiniBand architecture specifications.

4.2. Verb Groups
Verbs define an abstract definition of functionality provided to a host by a CI. Chapter 11 of the
InfiniBand architecture specifications defines certain verbs as mandatory, and some features are
optionally supported by the verbs. Figure 4-2 depicts the different verb groups, and their inter-
dependencies to some extent. In general the architecture defines the following verb groups.

• Transport resource management – Covers the following
o HCA access functions
o Protection domain management
o Reliable Datagram domain management
o Address handle management for Unreliable Datagram (UD) QPs
o Special QP access verbs
o General QP, End-to-End context management
o Completion queue management.
o Memory management services

• Multicast services for UD QP’s
• Work Request processing
• Event notification and handling.

The subnet management agent in the Verbs Driver must be compliant with the specification in Chapter
14 of Volume 1 of the InfiniBand Architecture specifications in terms of wire level formats for requests
and responses.

NOTE
Deviations from InfiniBand Specification
In Figure 4-2 below the Completion Queue operations require a valid protection domain. Although the
InfiniBand Specifications do not specify this dependency due to the fact that many QP’s in different
protection domains can still have the same Completion Queue. The association of a CQ to a protection
domain gives it the added implementation ease for user mode Completion Queues. Completion Queues
are required to have doorbells to enable the CQ for event notifications. For user mode processes, such
access must be facilitated from the process address space. Protection domains provide the process
level protection required to expose direct user mode IO capabilities of InfiniBand.

4.3. Byte-Ordering Conventions
All multi-byte quantifies defined by the InfiniBand™ specifications that are exchanged between nodes
are retained in network byte order to avoid frequent conversions. An example would be QP number,
P_KEY, Q_KEY, LID, GUID’s, PSN values etc. Such quantities are reflected in the API as ib_net16_t,
ib_net32_t or ib_net64_t defined in the ib_types.h header file.

 March 23, 2003

16 Verb Implementer’s Guide

ib_open_ca
ib_modify_ca
ib_close_ca

HCA Verbs

ib_allocate_pd
ib_deallocate_pd

Protection Domain

ib_allocate_rdd
ib_deallocate_rdd

Reliable Datagram
Domain

ib_create_av
ib_modify_av
ib_query_av
ib_destroy_av

Address Management

ib_create_qp
ib_modify_qp
ib_query_qp
ib_destroy_qp
ib_create_spl_qp

Queue Pair

ib_create_cq
ib_query_cq
ib_resize_cq
ib_destroy_cq

Completion Queue

ib_create_ee
ib_modify_ee
ib_query_ee
ib_destroy_ee

EE Context

ib_mcast_attach
ib_mcast_detach

Memory Management

Unreliable Datagram

ib_register_mr
ib_reregister_mr
ib_register_smr
ib_register_pmr
ib_reregister_pmr
ib_query_mr
ib_deregister_mr
ib_create_mwi
ib_query_mw
ib_destroy_mw

MCast

ib_post_send
ib_post_recv
ib_poll_cq
ib_enable_notify

Unreliable Datagram

ib_bind_mw

RC/UC/RD QPs

Work Request
Operations

Reliable
Datagram

Figure 4-2 Verb groups and relationships

4.4. Verb Classes
The following table lists the different verbs, mandatory or optional. In addition the table also lists if some
of the verbs can be implemented in user mode for speed path operations. This table mirrors Table 78 of
in the Volume 1.0.a of the specifications. For the verb classes identified by privileged, the operation is
performed in the kernel mode driver via either syscall () or ioctl () interfaces. For user-level access, it
implies the user mode process directly communicates with hardware with the assistance of the user
mode verb plug-in library.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 17

Table 4-1 Table of Verb Classes and Supported Features

Verb Mandatory/Optional Privileged or User Level
Open HCA Mandatory Privileged
Close HCA Mandatory Privileged
Query HCA Mandatory Privileged
Modify HCA Mandatory Privileged
Allocate PD Mandatory Privileged
Deallocate PD Mandatory Privileged
Allocate RDD Optional RD Service Privileged
Deallocate RDD Optional RD Service Privileged
Create AV

Mandatory Privileged

Query AV Mandatory Privileged
Modify AV Mandatory Privileged
Destroy AV Mandatory Privileged
Create QP Mandatory Privileged
Modify QP Mandatory Privileged
Query QP Mandatory Privileged
Destroy QP Mandatory Privileged
Get Special QP Mandatory Privileged
Create CQ Mandatory Privileged
Query CQ Mandatory Privileged
Resize CQ Mandatory Privileged
Destroy CQ Mandatory Privileged
Create EE Optional RD Service Privileged
Modify EE Optional RD Service Privileged
Query EE Optional RD Service Privileged
Destroy EE Optional RD Service Privileged
Register Memory
Region

Mandatory Privileged

Register Physical
Memory Region

Mandatory Privileged

Query Memory
Region

Mandatory Privileged

Deregister Memory
Region

Mandatory Privileged

Reregister Memory
Region

Mandatory Privileged

Reregister Physical
Memory

Mandatory Privileged

Register Shared
Memory Region

Mandatory Privileged

Allocate Memory
Window

Mandatory Privileged

Query Memory
Window

Mandatory Privileged

Bind Memory
Window

Mandatory User Level

Deallocate Memory
Window

Mandatory Privileged

Attach QP to
Multicast Group

Optional UD Multicast
Service

Privileged

Detach QP From Optional UD Multicast Privileged

 March 23, 2003

18 Verb Implementer’s Guide

Verb Mandatory/Optional Privileged or User Level
Multicast Group Service
Post Send Mandatory User Level
Post Recv Mandatory User Level
Poll CQ Mandatory User Level
Request Completion
Notification

Mandatory User Level

Local Mad
Operation

Not defined in InfiniBand
Specifications.

Kernel Mode (Optional)

NOTE
Deviation from the InfiniBand Specifications
The following changes are added to the Linux Verbs Specification for ease of implementation and to
provide more flexibility to the API’s.

1. Set async error handler, completion handler calls were removed as separate set functions. This

was necessary since the ci_open_ca () itself took the callbacks to be registered. This avoids
confusing cases, when the event is ready for dispatch to an earlier registered callback function,
when the

2. InfiniBand Specifications define the SMA and GSA to be part of the Channel Interface (CI). The
issue is that both the QP’s are required above the verbs also for Subnet Manager and
Communication Manager functionalities among many. Some hardware vendors may provide this as
a real QP interface, so that some processor agent in the HCA does the processing of MAD’s. Not
all HCA’s may have this facility, moreover the SMA functionality is well defined by the InfiniBand
Specifications, hence each vendor do not need to re-invent the wheel. In order to not complicate
the implementation for most HCA vendors, who would otherwise emulate these functionalities, the
Linux Implementation provides this for MAD’s directed at the local HCA.

Note: This interface is not visible above the Access Layer. Access Layer provides an interface

similar to QP for the aliased QP’s. The work requests submitted to the aliased QP’s exposed by
the InfiniBand Access Layer would automatically use the ci_local_mad () API’s.

Vendors supporting the special QP with native QP semantics do not need to provide the

implementation for ci_local_mad (). The CA attribute Structure also exposes this capability via a
Structure member. Please refer to the API documentation for more details.

3. InfiniBand Specifications does not specify an association between the PD and the Completion
Queue. This association is necessary to restrict doorbell space access from user mode to
processes that only own the Completion Queue.

4. Verbs in general specify many handles to be passed, some of which are redundant. Since in most
cases where both a CA handle and PD handle is required, just a PD handle would be sufficient,
since the PD was allocated on a CA. The vendor could track the CA handle within a PD handle.
Hence in almost all API’s the number of handles to the Verb API’s is far reduced. Please refer to
the ib_ci.h for relevant information on specific API’s.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 19

5. Driver Initialization
This section covers the basic initialization steps that an driver developer would need to perform before
the component can be used. We will cover all steps necessary from identification, to setup, before the
Verbs driver registers with the Access Layer via ib_register_ca ().

5.1. Identifying Host Channel Adapter
Each vendor would have a unique vendor and device id advertised in the PCI configuration space. Most
new architectures including 3GIO use the same method to enumerate devices attached to the system.
Each vendor HCA would have these values obtained from the PCI SIG. Table 5-1 below shows some
sample values for your reference

Table 5-1 Sample Device ID Table

Device Type Vendor ID Device ID PCI BaseClass PCI SubClass
Intel® GEN1
HCA

0x8086 0x3101 0x2 0x80

HCA driver would use existing OS enumeration schemes to identify the HCA using the device id fields
as shown above. Linux PCI driver registration functions allow a single registration to specify more than
one device id combinations. Refer to pci_register_driver () in the Linux kernel sources. The steps are
listed below

1. Register with PCI driver subsystem
2. PCI driver calls the probe function for each available device on the PCI bus. Linux PCI driver

calls the pci_probe function and provides a pointer to the pci_dev structure.
3. HCA driver determines Register Base Address necessary to be able to control and configure

the hardware. For e.g. a Linux kernel mode driver, we would use the pci_resource_start
(pci_dev, 0), and pci_resource_len (pci_dev, 0) to obtain the start physical address and length
of the register space.

4. HCA driver then uses these values to map and obtain a kernel virtual address for this physical
address for use in the kernel mode driver.

5. HCA driver now performs various initializations on the component to make it ready for use.
6. Registers with the IB Access Layer indicating that this HCA is ready for use via the

ib_register_ca (). As part of the registration, it also sends the HCA EUI64 identifier to identify
the HCA being added to the system.

The exact order of the component on discovery is vendor dependent. The sequences illustrated
here should be treated as reference only.

Figure 5-1 and Figure 5-2 illustrate the example load and unload sequences for a typical HCA
driver.

 March 23, 2003

20 Verb Implementer’s Guide

1 . m o d p r o b e

U s e r M o d e K e r n e l M o d e

H C A D r i v e r C o r e K e r n e l

I B A c c e s s
L a y e r

2 . p c i_ r e g i s t e r _ d r i v e r

3 . p c i_ p r o b e

4 . i b _ r e g is t e r _ c a

Figure 5-1 Driver Load sequence

1 . m o d p r o b e - r

U s e r M o d e K e r n e l M o d e

H C A D r i v e r C o r e K e r n e l

I B A c c e s s
L a y e r

2 . p c i_ u n r e g is t e r _ d r i v e r

3 . p c i_ r e m o v e

4 . i b _ u n r e g is t e r _ c a

Figure 5-2 Driver Unload Sequence

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 21

5.2. Initializing the Host Channel Adapter
Most HCA’s would provide several advanced configuration options to suite any OS environment and
any specific application requirement, for example configuring the page size support for doorbell space
could be different for different operating environments. Linux* x86 requires a 4K stride. Itanium®
Architecture has a configurable page size. Current RedHat distributions are shipped with 16K page
sizes. The following sections identify some the general configuration sequence.

Start

Initialize TPT
Initialize AVT
Initialize EQ

Initialize HCA

Success

Free AVT
Free EQ
Free TPT

Reset HCA

No

Initialize Interrrupt
&

Tasklets

Register with
IB Access Layer

Return Success

Deinit Adm in
Com m and

Engine

Return Failure

Reset HCA
m ap registers
m ap Doorbell

Initialize Adm in
Com m and

Engine

Figure 5-3 Initializing the HCA

 March 23, 2003

22 Verb Implementer’s Guide

Figure 5-3 above shows a typical initialization sequence for initializing the HCA in a Linux driver
environment.

HCA vendors may abstract different initialization steps and provide a simple programmatic interface to
initialize the component. Once HCA is identified and resources mapped for driver use, the first step that
the driver would perform is to issue a reset to initialize the component. The sequence of steps is listed
below assuming such abstractions are available.

1. Issue Reset to hardware
2. Initialize and map device specific space for driver use.
3. Initialize Context structures required to track this instance of the HCA
4. Initialize system resources in system memory such as

a. Memory Management interfaces
b. Address Vector Table
c. Event Queue
d. General resource allocation strategy for QPs and CQs

5. Perform the Initialize HCA administrative command.
6. Retrieve EUI64 identifiers for the adapter and all ports supported.
7. Register with OS for interrupt processing
8. Inform the Access Layer about new HCA with the verb interface structure via the

ib_register_ca().

NOTE
For exact details on retrieving EUI64 identifiers refer to the vendors Programmers reference manual.

Some typical parameters required to initialize the HCA are listed below. Each vendor may require
different setting, these are provided purely as an example.

Table 5-2 Initialize HCA Parameters

Parameter Comments
Doorbell Area Stride
(PAGE_SIZE value)

Linux IA-32=4K
Linux IA-64 = 16K

Maximum QP’s Vendor Configurable
Maximum CQ’s Vendor Configurable

5.2.1. Memory Management
HCA implementations must support a mechanism to translate virtual addresses to physical addresses.
This is necessary so that the HCA can perform DMA operations without involving host CPU. This facility
is referred to as the Virtual To Physical Translation Table (VPTT) in this document.

VPTT is used for both internal resources and to register memory regions with a HCA. HCA’s may
choose to create the Work Queue Element (WQE) rings and the Completion Queue Entry (CQE) rings
in host memory. HCA’s would be required to read or write from these memory locations, which may be
formed by completely disjoint physical pages. Hence VPTT may be used for managing internal
resources and for registering client specific memory regions for performing data transfer operations to
or from these memory locations.

Modern operating systems have a limited set of physically contiguous memory for some special
purpose drivers that cannot handle non-contiguous memory regions. In embedded operating systems
most memory allocation calls may naturally be physically contiguous. In such cases, certain HCA
vendors may provide a physical mode operation, where there is no virtual to physical translation, and
hence would improve system performance in such special operating environments.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 23

The allocation and maintenance of VPTT in HCA drivers is further explained in Memory Management
sections, later in this document.

5.3. Address Vector Initialization
Address Vectors (AV) is used to provide remote node address information for Unreliable datagram (UD)
transport service type. AV’s can exist in system memory, or device memory located locally in the HCA.

An HCA vendor may choose to support AVT’s in many different forms.

• AVT’s in device memory – This requires that each address vector creation be managed in
conjunction with the device. Privileged mode driver manages operations such as create, modify
and destroy address vectors.

• AVT in system memory managed by kernel mode driver – Some HCA vendors may choose to
provide all AVT in system memory, yet controlled by a kernel mode agent. This may be
required since AVT has protection domain parameters, which must be validated, that only a
kernel mode trusted agent could perform.

• AVT in user space – Some HCA vendors may choose to provide AVT in user mode local to the
process address space. In such implementations the entry for protection domain cannot be
validated, since a trusted mode agent did not provide the information. A vendor specific library
in user mode may require working in conjunction with its kernel mode driver to exchange critical
information necessary to achieve this transparently.

• A combination of the above schemes.

Depending on where the AVT’s are located the HCA driver may need to allocate kernel memory and
initialize them prior to the HCA being advertised to the Access Layer.

Some important considerations that a HCA vendor should consider for exposing address vectors in
user mode are listed below.

5.3.1. Important User Space AVT Considerations
When AVT is provided in user address space, the vendor would typically require implementing some
mechanism to do the following for compliance.

1. Pass an L_KEY and virtual address of memory registered in process address space. This is
required so that the HCA can DMA the AVT entry directly from user address space.

2. The protection domain of the registered memory region that holds the L_KEY must match the
protection domain of the QP for which this AVT is being used.

3. The port number of the AVT must match the port number for the QP for which this AVT is being
used.

4. The protection domain entry in AVT must be ignored, since only a kernel mode agent can
perform protection domain checks.

5.4. Event Queue Initialization
HCA’s utilize event queues to indicate attention condition that requires more processing from the driver.
Events indicate one of the following conditions. Events do not correspond to interrupt generation. Some
HCA may be capable of generating events, but the interrupt generation may be shut off unless
requested by the kernel mode HCA driver. Since HCA’s may have practically several thousand QP’s
and CQ’s, if the HCA generates events for notifying conditions, that may impede system performance
severely.

The event queues must be sized large enough to hold all the possible event generation sources. If the
HCA cannot generate an event, it’s considered a fatal error, and HCA is expected to immediately shut

 March 23, 2003

24 Verb Implementer’s Guide

down all its services. The event generation scenarios are vendor specific; some sample events are
shown below. Please consult the vendor programmer’s guide for the HCA you are using to get more
specific information.

• Receive and Send Queue Completion Events
• QP or EE state change events
• Receive and Send Queue errors
• Completion queue error events
• Port State change and violation trap events

All the above-mentioned event sources could share a single event queue for a HCA. Some vendors
may choose to provide multiple event queues, but co-coordinating them for correct event delivery may
be a problem. If the interrupt source is still the same, there is little chance to process events in parallel.
It’s the completion queue processing that needs to be done in parallel. Since each process would own
its own set of completion queues, this comes natural with the right usage model. A driver trying to
improve this on its own may hurt OS performance and scheduling methods.

5.4.1. Sizing the Event Queue
Sizing the event queue is one of the most important aspects of the initialization sequence performed by
the HCA driver.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 25

The following table provides an example of the number of events each source can generate. In the
following example we assume 256K QPs, 256K CQs and 2 ports.

Table 5-3 Event Generation Sources

Resource Events Generated HCA
Maximum

Total Possible
EQE

Queue Pairs 4 events
• RTR-RTS/RTS-SQD
• Path Migrated event
• QP Catastrophic event
• Connection established event

256K QP’s 256K * 3 = 768K
Events

Completion
Queues

2 events
• Completion notification
• CQ Error Notification

256K CQ’s 256K * 2 = 512K
Events

Port Events 2 events
• Port State Change
• P_KEY Violation
• Q_KEY Violation
• Buffer Overrun
• Link Integrity

2 2 * 5 = 10 Events

The maximum number of events that a configuration can generate depends on the number of resources
that could be allocated and used. The number of possible events can be calculated as follows

 MAX_EVENTS = MAX_QP * 4 + MAX_CQ * 2 + MAX_PORTS * 5

5.5. Setting up Multicast
Multicast support is essential for supporting IP over IB. Due to design dependencies for name
resolution; the same support is indirectly essential to support Sockets Direct Protocol (SDP). If the HCA
vendor supports this capability they must set the appropriate capability bits in the attribute structure to
indicate that it can handle multicast operations. If the vendor supports this capability, then it also
exports the following information.

o Number of multicast groups supported.
o Number of QP’s per multicast group
o Verbs support to add or remove a QP from multicast group.

NOTE
Multicast LIDs can be overloaded. This means that a single multicast LID can refer to more than one
multicast-gid. The implementation to support this is vendor specific. InfiniBand architecture does not
specify how this capability is handled or made known to the configuration manager. The best choice
would be to have a 1-1 mapping, and the overloading can be avoided totally for some efficient HW
implementation choices.

NOTE
The vendor implementations are expected to be ready to handle any verb calls before the registration
returns. Some implementations of the Access Layer may require notifying upper level protocol drivers
about a new HCA arrival, and they may start making verb calls to allocate resources. One such
example would be an SMA, who may start allocating the special QP for use on notification immediately.

 March 23, 2003

26 Verb Implementer’s Guide

6. Transport Resource Management
The following sections show some implementation options for managing the large number of resources
presented by the HCA in an optimal fashion. The resource management algorithms are only suggested
guidelines; an implementer can choose a different scheme as it fits the operating environment.

Resources presented by an HCA can be categorized in 2 different classifications.

• Resources that need to be identified very quickly, since they are required in speed path
operations. QP’s and CQ’s fall in this category since they are required to identify the handles or
contexts that needs to be passed up to the consumer to indicate a completion event.

• Resources that need to be just tracked and free list maintained. PD’s, RDD’s, AV’s are such
resources. Speed path operations don’t need lookup based on resource numbers for these
resources.

Resource management for each requirement can be generic, and the particular implementation only
abstracts the management of the resource, the resource manager for that class maintains identification
or fingerprinting resource numbers.

QP[0]

Lock

State

Free List Head

Next Index to Allocate

Max Elements

Array of
ptrs[Max_Elements]

QP[max-1]

QP[max-2]

.

.

Handle to CA

Resource Num

List management

Handle to CA

Resource Num

House Keeping

Handle to CA

Resource Num

House Keeping

Figure 6-1 Resource Management Structures

Resource such as QP’s and CQ’s which need to access context values for callback purposes would
require a 2 step process for allocation. First the resource is obtained from a free list, once allocated and
handed to the client; they occupy slots in the pointer array until deallocated. For purpose of this
discussion we will assume that the HCA provides the resource number that needs attention. For
example, the CQ number is reported when a completion queue event is being reported to driver
software. HCA driver uses this number to directly reference the resource that needs to be attended.
This mechanism allows immediate lookup since these operations are speed path sensitive. The size of
the array should be sized to hold the maximum number of resources expected. Alternately one could
choose a hash bucket to perform another level of lookup. The size of the array is a very small
percentage of memory required to accommodate such large resources by the HCA driver. So the array
size should be cause for concern.

Certain other resources such as Protection domains, Address Vectors, Reliable Datagram domains do
not need access in the speed path operations. Hence the array holding pointers to resources is not a

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 27

required. A simple allocation and de-allocation flow is provided below in Figure 6-2. The general idea is
that the driver provides a simple scheme that is applicable for all resource types and extended based
on special needs as shown above.

Start

Any in Free
List?

Lock Resource
Pool

Remove Head
Element

Unlock Resource
Pool

Allocate New

Start

Lock Resource
Pool

Unlock Resource
Pool

Add to Free
List

Figure 6-2 Generic Resource Management

6.1. Accessing the HCA
A verb consumer must acquire a handle to the adapter before acquiring any transport resource such as
QP’s and CQ’s. The following sections explain the HCA access verbs.

6.1.1. OpenHCA
OpenHCA verb returns an opaque handle that identifies the HCA instance being open. The InfiniBand
Access Layer is the only layer that makes this call. Typically the input parameter would be the HCA’s
EUI64 identifier that identifies the local HCA. Vendor specific HCA driver allocates a kernel data-
structure to identify this open instance. InfiniBand specifications require that this verb only be called
once. Driver software must track this so deny further attempts to open this HCA instance.

Pointer to HCA
Attributes

HouseKeeping
Flags

Lock

InUse

Figure 6-3 HCA Handle

Figure 6-3 shows some of the fields that the CA handle
returned to the verbs consumer holds. The important
fields are

• A pointer to the HCA attributes.
• Housekeeping flags can hold certain state

information about the CA handle itself.
• Lock member provides serialization access to

this structure.
• InUse member keeps track of active callbacks

in progress.

 March 23, 2003

28 Verb Implementer’s Guide

Since the API’s are very asynchronous in nature, it is important that the drivers keep track of structure
reference counts. This is necessary so that when a active callback is in progress, the verbs driver would
not succeed a ci_close_ca (). The InUse member is incremented each time a completion or error
callback is invoked to the access layer. The ci_close_ca () must block until pending callbacks in
progress are complete. For this reason, the consumer must never call the ci_close_ca () from interrupt
context.

6.1.2. QueryHCA
QueryHCA verb allows a consumer to inquire properties of the HCA. HCA driver software must
maintain limits on resources, and return capability appropriately to the consumer. This verb reports the
following data.

• Identifying data about the HCA, which is HCA’s EUI64 identifier, IEEE vendor ID, and the
device ID.

• Maximum allowed limits on certain hardware resources such as QP’s, CQ’s, PD’s, RDD’s and
Multicast Group related limits.

• Number of port supported
• Optional features supported

o Violation counter support, support for raw QP’s, Reliable Datagram, Alternate path
migration,

o Ability to change primary port during a SQD->RTS state change.
• Per port data such as

o Port’s EUI64 identifier, Subnet Manager Info, Port States, violation counters etc.

An example of the memory layout of HCA attributes for a 2 port HCA is shown in Figure 6-4 below.

The important note is that the port attributes are located in an array form, so port0 attributes is followed
immediately by port1 and so on.

NOTE
When the data is returned to user mode or to a different address space than the kernel, the function
that performs the copy must also fix the pointers relevant to the user mode address after performing the
copy to user mode buffer. The Access Layer will perform these when the proxy performs the copy to
user mode. The buffer received by any vendor driver will receive only have kernel mode addresses.
The function ib_copy_ca_attr () can assist in this regard.

When drivers indent to pass some private attributes, such as any special capabilities based on driver
loaded to the user mode plug-in, they can keep the extra data at the end of the hca attributes. Setting a
larger value in the attributes->size member of the ca attributes structure, AL and the User mode Proxy
copy the entire size to user mode.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 29

H
C

A
 A

ttr
ib

ut
es

HCA attributes

Page Size Array

Port[0] attributes

Port[1] attributes

.

.

.

gid_table[port 0]

gid_table[port 1]

pkey_table[port 0]

pkey_table[port 1]

CA GUID
Device ID

Vendor ID

HW Agents

P
or

t A
ttr

ib
ut

es

.

.

.

Port GUID
Port Number

MTU

Number of GIDS

LID

Pointer to GID Table

Number of PKEYS
Pointer to PKEY Table

Figure 6-4 Sample HCA Attribute Layout

The total size required for reporting HCA attributes can be computed as below.

total_ca_attr_size = sizeof (ib_ca_attr_t) + num_page_supported *

sizeof (uint32_t) + num_ports * sizeof (port_attr_t);

for each port
{
 total_ca_attr_size += num_pkeys * sizeof (uint16_t);
 total_ca_attr_size += num_gids * sizeof (ib_gid_t);
}

The access layer has some functions that can be used to duplicate the ca attribute structure. They are;
ib_dup_ca_attr, ib_free_ca_attr and ib_copy_ca_attr. Please refer to the documentation on these API’s
for more information.

6.1.3. ModifyHCA
Modify HCA allows certain attributes to be set by the HCA Driver. This verb is also used to set certain
capabilities that can be returned upon query by a subnet manager (SM). The attributes that can be
modified by this verb are listed below.

 March 23, 2003

30 Verb Implementer’s Guide

Table 6-1 Modify HCA Attributes

Attribute Comment
IB_CA_MOD_IS_CM_SUPPORTED Indicates if a connection manager is available on this

port
IB_CA_MOD_IS_SNMP_SUPPORTED Indicates that SNMP agent is present on this port

IB_CA_MOD_IS_DEV_MGMT_SUPPORTED Indicates that SNMP device management agent is
present on this port.

IB_CA_MOD_IS_VEND_SUPPORTED Indicates that Vendor Management Support is present
on this port

IB_CA_MOD_IS_SM Indicates if Subnet Manager is locally running on this
port.

IB_CA_MOD_IS_SM_DISABLED Indicates if an out of band mechanism turned of SM
support on the port. See compliance C16-49.

IB_CA_MOD_QKEY_CTR Support for initializing the Q_KEY violation counter.
This counter is optional, and support must be
indicated by setting capability in ca_attr_t.

IS_CA_MOD_PKEY_CTR Support for initializing the P_KEY violation counter.
This counter is optional, and support must be
indicated by setting capability in ca_attr_t.

This API operates only on a port. Although the Verb defines that one must be passed for each port, this
is cumbersome to manage. Hence the Linux implementation only takes a port level attribute. The verb
will co-operate with the internal SMA that supplies data so that the new values are indicated when the
port attributes are queried the next time via a SMP, either locally via the ci_local_mad () interface, or
externally requested via a SMP request if the SMA is resident on the HCA.

The Verb provider does not need to perform any authentication checks in order to perform these
changes. It is expected that the IB Access Layer must have done any necessary authentication prior to
invoking the vendor specific interface call.

The verb specification only specifies IsSM, IsSNMP, IsDevMgmt and IsVendor along with the P_KEY
and Q_KEY violation counters as required parameters for the ci_modify_qp () call. The other values are
left to implementation-defined mechanisms. In this implementation the API provides the same
mechanism for all capability settings, which are advertised in PortInfo capabilities.

NOTE
• The authentication mechanism is not determined at this time. In a later version of the software,

the Access Layer may require a special user account to exist and check if the admin account
user is performing these changes, otherwise it must return E_PERM as error.

• Port numbering starts at 1. Port number is not an index.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 31

6.1.4. CloseHCA
This verb indicates that the InfiniBand Access Layer is not going to need any more services from the
HCA driver. When making this call it is expected that the caller has destroyed all resources created on
this HCA. The HCA driver does very minimal tracking on behalf of its clients, and hence it’s the
responsibility of the Access Layer to ensure proper cleanup.

Close HCA

Lock Handle

CallbackCount
== 0 ?

Unlock Handle

Set Waiting Flag

Set Destroyed
State

No

Yes

End

Block Thread

Event Processing Wakeup

Figure 6-5 CloseHCA

CloseHCA also needs to ensure that
there are no pending callbacks pending
when the destroy call is complete. There
are two possible solutions. The verb is
considered synchronous like the free_irq
() call in the kernel hence the CloseHCA
verb cannot be called from interrupt
context. The CloseHCA verb would need
to spin until the count drops to zero, and
any future callbacks must be prevented.

This verb blocks until any pending
callback from the HCA driver returns,
then sets a flag to indicate that the handle
is destroyed before returning back to the
consumer.

In Figure 6-5, the “Block Thread” could be
a tight spin loop if the call is made from
non-blocking sections of the driver, such
as timer callbacks etc. It is advised that
this call be allowed only when in passive
mode, and that the thread can be
suspended until this condition can be
reached.

Before returning to the client, the HCA
driver frees up any resource allocated to
track the open instance.

6.2. Protection Domain
Protection domain is used as a form of access security for memory regions, address vectors and queue
pairs as defined by the InfiniBand Architecture. The Architecture requires a protection domain before a
QP is allocated. Most vendors who expect to support user mode IO, will have a form of notification
handshake from user mode. In most HCA’s this is a device memory address mapped to the process
address space. We call this address the “doorbell” in this document.

In order to protect the notifications from errant processes ringing doorbells, it is required that the
doorbell be page aligned and also be located in the process address space for user mode access. In
order to make this process level association for Completion queues, the Linux Implementation requires
a protection domain for allocating a Completion Queue, although the architecture does not require one.

Some vendors may have the protection domain object as a plain integer for verification purposes to
perform access checks, and a separate memory space for user mode access. In such cases the
protection domain handle must internally allocate one such address from device memory space if the
protection domain is intended for use in user mode.

 March 23, 2003

32 Verb Implementer’s Guide

NOTE
The doorbell stride must be equal to the PAGE_SIZE of the kernel. For IA32 Linux, this value is 4K, and
16K for RedHat® based Itanium® distributions.

6.2.1. Protection Domain Allocation
Protection domain is required to create any resource on a HCA. The relationship is identified in Figure
4-2. The only resource that does not require a protection domain according to InfiniBand Specifications
is the Completion Queue resource. For reasons mentioned above, in order to protect Completion
queues in user mode, the association to protection domain for a CQ is extended to provide the same
purpose of access check and security.

Protection domain resources can be maintained using a generic pool of free resources, just maintaining
the next available resource as shown in Figure 6-2. The scheme of using an array to track resources by
number is not required to maintain free protection domain resources.

NOTE
Some HCA vendors may choose to provide a special device memory address, which can operate on
any CQ or QP. Which for purpose of this document is called the Privileged Notification Address (PNA).
This device memory can be used for all kernel mode verb support, since there is no special protection
required. The vendor could still use a different protection domain when asked for, but re-use the same
PNA for kernel mode applications since they are all in the same address space.

Figure 6-6 shows the fields tracked as part of a PD
handle. The protection domain number identifies the
resource number in use. The reference count field is
used whenever a resource being created belongs to this
protection domain. The resources are:

Protection Domain
Number

Reference Count

Virtual Address of
Doorbell

List Management

Figure 6-6 PD Handle

• Completion Queue
• Queue Pairs and EE’s
• Create Address Vector
• Register Memory operations

The reference count gets incremented with each
resource association with a protection domain, and
decremented during each resource being disassociated.
The List management fields are used when the PD is
being freed.

6.2.2. Preparing Doorbells for User Mode Access
User mode processes require a mechanism to directly notify hardware for fast IO purposes. Doorbells
are required for the following purposes

• Posting Work Request to Send Queue.
• Posting Work Request to the Receive Queue.
• Enable notifications on the Completion Queue to request event notification when a new entry is

added to the CQ.

If a HCA vendor supports such a facility, then the vendor is required to support a library in user mode to
support vendor specific functionality to facilitate user mode access.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 33

All resource allocations are performed via the kernel proxy agent that is a component of the Access
Layer that facilitates user mode support. In order to use this mechanism the steps required by a HCA
vendor are:

1. Vendor plugin uvp_pre_allocate_pd () provides the vendor a chance to prepare a buffer to
receive information from its own kernel mode library. The vendor library would setup a buffer to
receive the physical address of the doorbell, which required to be mapped to process user
address space.

2. The user mode support now performs the ioctl call, and passes an appropriate sized buffer
requested by the vendor library to its kernel mode agent. The presence of the buffer is an
indication that this resource is being allocated for user mode. The vendor kernel mode library
now copies relevant information that would be passed back to the user mode library.

3. Vendor plugin uvp_post_allocate_pd () is called after a successful call to allocate a protection
domain. The umv_buf_t holds the data that was sent from the verbs kernel mode driver. In this
case we assume that the physical address of the doorbell was passed. Now the vendor library
performs an mmap () call to obtain a user virtual address for a kernel virtual address.

NOTE
The association of a protection domain with a doorbell is only an example illustration. Every vendor may
have their own unique way to allocate these objects. The library calls in user mode provide additional
flexibility for each vendor to invent their own schemes to support these options.

6.3. Reliable Datagram Domain
Most HCA vendors do not manage Reliable Datagram Domain (RDD) as a hardware resource. This is
because a RDD object is created and co-managed potentially between multiple processes, so that they
can reuse the same End-to-End Context resource between processes. This could be just a 32bit
number that identifies a RDD used to create an EE for use in RD style connections. HCA driver writer
simply needs to maintain what RDD’s numbers are
allocated and manage the resources. The scheme
depicted in Figure 6-2 can be used to maintain RDD
resources.

Reliable Datagram
Domain Number

Reference Count

List Management

Figure 6-7 RDD Handle

Reliable datagram domain handle and related
information is shown on the right in Figure 6-7. When
creating an EE or a RD QP, this reference count is
incremented. When an attempt is made to destroy the
RDD handle, if the reference count is not zero, then the
HCA driver must indicate that the resource is in use.

6.4. Address Vector Management
Address Vectors provide local and remote address information for all Unreliable datagram (UD)
PostSend calls. Some HCA vendors may provide facility to use create address vectors in user mode.
As discussed before in section 5.3, there are several methods. In this example we will assume 2 cases,
which should cover most common cases.

6.4.1. Address Handles Allocated in Kernel mode
In this example, we assume that the address vectors are allocated in kernel mode. During HCA
initialization kernel mode driver has done the following.

 March 23, 2003

34 Verb Implementer’s Guide

1. Allocate virtually contiguous memory required to hold a pre-defined MAX_AV number of
address vectors.

2. Register the memory required with the HCA. This is required so that the HCA could compute
where to DMA the address vector from memory.

3. Indicate the start of the virtual address, the L_KEY of the registered region, and the number of
address vectors available.

For the purpose of this discussion we will assume that the HCA requires the index to the address
vector, in order to determine where in physical memory the AV entry is present. Since the HCA is aware
of the base for the AVT, it can compute what the virtual address is, and hence the physical address of
the AVT entry.

6.4.1.1. AV Handle for Kernel Mode Address Vectors
AV Handle tracks the address vector handles created
and managed by the HCA driver software. The AV
resource manager allocates these structures on
demand. Since the AVT table is a virtually contiguous
table, HCA driver can identify the system memory
associated with this index. When address vectors are
released, the handles are recycled to the free pool for
future allocation. Typical information stored as part of
the address vector is shown on the right in Figure 6-8.

AV Index

PD Handle

List Managem ent

Figure 6-8 Address Vector Handle

6.4.1.2. User Mode Access for Kernel Mode Address Vectors
In the above example the index of the AVT is the only necessary info that the HCA requires for
accessing an AVT. So the sequences of steps are:

1. Setup some user mode buffers to receive the index of the AVT during the uvp_pre_create_av ()
2. Proxy agent calls the kernel mode driver and passes a buffer to pass this information back to

user mode library.
3. User mode plugin uvp_post_create_av () is called with the AVT. The umv_buf_t passed now

contains the index of the AVT that the user mode library would use to allocate and store in the
user mode buffer for future use.

In future ci_post_send () calls to the send queue of an UD QP, the user mode post routine would now
have enough knowledge about how to construct the AV information necessary for this specific HCA.

6.4.2. Managing AV Entries in user mode
Some HCA vendors may choose to keep the AV for user mode applications entirely in user mode. A
possible implementation and method to handle user mode access is outlined in this section.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 35

HCA vendors are required to perform some extra checks in order to be compliant with the InfiniBand
Specifications.

1. AV entry memory area must be pinned, and an L_KEY produced for the memory region holding
the AV entry.

2. Protection Domain checks: - Each AV entry has a protection domain entry. Since the address
vectors are hosted in user mode, the value of the PD cannot be trusted. InfiniBand
Specifications require that the PD of the AV entry and the PD of the QP for which it’s being
used must be the same. The Vendor would require ignoring the PD in the AV entry record, but
instead use the PD of the memory region used to register this user mode address vector.

3. Port number checks: - This is similar to the PD check. The AVT has a port number field, which
must be validated. In the case the AV entry is allocated in kernel mode, the kernel mode driver
would have checked and returned an immediate error. In the case the AV entry is hosted in
user address space, the HCA would require to perform run time checks for validity of the QP
and the AV entry port number to match, or return an appropriate error as required by the Verbs
specification.

6.4.2.1. User Mode access for Address Vectors in User Address Space
There is much more the user mode library is expected to do to support address vectors completely in
user address space. The primary factors that govern that are.

1. Memory registration cannot be performed for each and every address vector being allocated.
This would negate any performance gain of allocating them in user mode, since a kernel
transition is not avoided.

2. User mode Address Vector creation would now need to track the L_KEY of the region and the
address in combination to indicate an address vector. Since in the case as shown in Section
6.4.1, the user mode could just trust the index returned from kernel mode driver.

3. Manage a pool of address vectors for each HCA, Port number and PD tuple. When the poll is
empty, then a new buffer needs to be registered and tracked for cleanup operations.

The interaction between the HCA library in user mode and the driver in kernel mode is depicted below.

1. During the uvp_pre_create_av () the user mode acquires a large buffer and passes the address
via the umv_buf_t to its kernel mode driver.

2. Kernel mode driver, registers the buffer, and passes the L_KEY to the use mode HCA library
via the umv_buf_t.

3. User mode library now initializes its poll of AV entries and returns one handle back to user
mode application to satisfy the request.

4. On future calls to uvp_pre_create_av (), if a buffer is available from the pre-registered pool,
then the call would allocate a handle and return IB_VERBS_PROCESSING_DONE to indicate
that a kernel mode call is not necessary any more. The memory pinned for this purpose must
be cleaned when the original address vector is being destroyed as part of final cleanup.

The user mode library will also short circuit the user mode plugin uvp_pre_destroy_av (),
uvp_pre_query_av () and uvp_pre_modify_av () are also required to use the special return code
IB_VERBS_PROCESSING_DONE, in order to avoid making the call via the proxy kernel agent.

6.5. Managing Queue Pairs
Queue pairs are managed just like any other resource management as described in Figure 6-2. Since
QP’s resource access would be required during callback or event generation time, its important to be
able to perform a quick lookup based on resource numbers. The assumption here is that the HCA
would provide the HCA driver the resource number to identify the context in kernel mode for event
propogation. If the HCA has any special requirements for managing special QP’s then the driver must

 March 23, 2003

36 Verb Implementer’s Guide

ensure that those are reserved before registering with the Access Layer. The HCA driver must also
have no assumptions on the sequence, or ordering of allocation to rely on the allocation pattern of the
Access Layer.

For e.g. if an HCA requires that the real QP0 and QP1 be reserved for port 0, then these resources
must be reserved and never be available when a another ci_create_qp () calls is made on behalf of a
client.

6.5.1. Creating Queue Pairs
Create Queue Pair involves allocating a QP resource, registering the creation with the HCA using an
appropriate administrative command, setting initial states and QP query attributes before returning the
newly created QP handle. The type of QP being created is typically communicated to HCA via the
administrative command to create a queue pair. An example list of parameters is shown below as
reference in Table 6-2.

Table 6-2 WQE Creation Parameters

Feature Comment
WQE Depth Maximum Number of WQE’s.
Scatter Gather Lists Number of SGL’s per WQE.
WQE Ring Start
Address

Must be registered with the HCA.

Completion Queue CQ number for the Send & Receive Queue
QP Signaling Type Signaled always, or Signaled via each WQE
Protection Domain May additionally indicate doorbell pages valid for this QP.
WQE Page Size Page size for the WQE memory being registered.
Type of QP Transport type for this QP (RC, UC, RD, UD, Raw, Special QPX)

The algorithm for creating a QP is shown in Figure 6-9. The primary tasks in allocating a QP for use
would involve the following.

• Allocate a free QP
• Compute the size of the WQE’s for Send and Receive Queues and allocate memory for WQE.

The number of SGL determines the WQE sizes, and the numbers of WQE’s determine the
space to hold the WQE’s.

• Allocate VPTT to present the address space as a virtually contiguous space to the HCA driver.
• Define the parameters and perform the administrative command for HCA to inform the HCA to

initialize any necessary context for this QP.

NOTE
The scenarios explained below and the parameters are just example parameters. Each vendor
requirement may include additional requirements.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 37

Start

Valid Parms INVALID_PARAMETERS

Create QP Handle
Calculate WQE
size, SGL etc

Allocate WQE
memory

Success INSUFFICIENT_RESOURCES

Increment PD_RefCnt
Increment Recv CQ RefCnt
Increment Send CQ RefCnt

Allocate TPT Space

Success

Inform HCA of QP
Creation

Release resources

QP_STATE=RESET Return Handle

Decrement PD_RefCnt
Decrement Recv CQ RefCnt
Decrement Recv CQ RefCnt

Figure 6-9 Creating a QP or EE

 March 23, 2003

38 Verb Implementer’s Guide

6.5.1.1. Queue Pair Handle
The Queue Pair handle is used to keep track of all details of the queue pair while in use. Some of the
fields that are required are shown in Figure 6-10.

• Handle to open instance to track the HCA on which the resource was created.
• Handle to protection domain to which this QP belongs.
• Send and Receive Queue information hold the following information of the specific queues

o Pointer to CQ controlled per WQ data-structure
o Index where the next WQE to post
o Number of WQE’s posted
o Ring Size for this Queue
o Pointer to WQE ring base

• Generic QP specific Information
o QP Number
o L_KEY of registered region for WQE space.
o QP Type
o Number of SGL’s etc.

R eceive Q ueue S pec ific
In form ation

S end Q ueue S pec ific
In form ation

L_K E Y of W Q E space

Q P A ttribu tes

P ointer to C Q contro lled
P er W Q S tructure

N ext W Q E to P ost

N um ber o f W Q E s P osted

R ing S ize

P ointer to C Q contro lled
P er W Q S tructure

N ext W Q E to P ost

N um ber o f W Q E s P osted

R ing S izeR
ec

ei
ve

 Q
ue

ue
S

en
d

Q
ue

ue

R ing C onfiguration
(N um ber o f S G Ls, Q P type etc)

Q ueue P air
C onfiguration

Housekeeping

B ack P oin ter

Forward P oin ter

P ointer to W Q R ing B ase

P ointer to W Q R ing B ase
H C A H andle

P rotection Dom ain H andle

Figure 6-10 QP Handle Data-Structure

6.5.2. Modifying QP Attributes
A verb consumer uses this interface to modify QP states, and also to change some operating
parameters for the QP depending on if that change is supported. Figure 6-11 below shows the
permitted QP states and how ModifyQP verb can transition states. HCA driver may also keep track of

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 39

the current state information in the QP handle. This is handy to satisfy the QueryQP verb, in addition
certain compliance statements in Work Request Processing require that the verbs return immediate
error if posts to the send side is attempted when the QP is not in RTS state.

Undefined

Reset

OR
Destroy QP

(from any state)

SQ Drain

Ready To
Send (RTS)

Ready To
Rcv (RTR)

Initialized

Create QP

Modify QP

Modify QP

Modify QP

Modify QP
Modify QP

Modify QP

Modify QP

Modify QP
(from any state)

Modify QP
(from any state)

OR

Reset

Error

SQ Error

RQ Comp. Error
Async Error

SQ Comp. Error

SQ Comp. Error

Processing Error
(Dependent on QP

Type)

Figure 6-11 QP States

InfiniBand architecture allows several parameters to be modified during each these QP state
transitions. Some need to be supported by all HCA’s and some are optional and supported only if the CI
permits those operations. The options are listed in Table 79 in Chapter 11 of the InfiniBand
Specifications Volume 1. Please refer to the vendor specific HCA programmer’s reference on what
values are applicable to a specific HCA. HCA drivers are expected to export such optional capability via
the CA attributes structure, so that the Access Layer can have enough knowledge about a particular
capability of an HCA.

The verb provider must keep track for QP’s in connected state, a reset followed by the next RTR
transition must not happen before the TIME WAIT state has expired.

Each QP state transition is unique and discussion is very vendor specific. Such discussion is beyond
the scope of this document.

NOTE
Deviation from the InfiniBand Specifications
The access layer provides facilities that destroy resource hierarchy, so that the client does not need to
perform and track resources. The specification recommends that the communication manager manages

 March 23, 2003

40 Verb Implementer’s Guide

the TIME WAIT state for a QP and not release it until the time has expired. This behavior implies the
following.

• CQ’s cannot be destroyed until this QP is destroyed
• PD’s cannot be destroyed until the CQ’s and QP’s are destroyed.
• AV’s cannot be destroyed until the PD’s are destroyed.
• ib_close_ca () cannot be called until all the above resources are destroyed.

This would also mean that strictly the application couldn’t quit until these conditions are satisfied. If the
application has several QP’s this time to wait will be significant and noticeable. On the other hand the
HCA driver without any complexity can very easily maintain this state.

Functionally this does satisfy the sprit of the requirement, which is that the same QP must not be used
for another connection before the TIME WAIT period has expired.

NOTE
When processing PostSend () and PostRecv () verbs, the HCA driver is required to return invalid state
as an immediate error if the QP is not in the appropriate state. For performance reasons, the HCA
driver maintains the state information in the QP data-structures, as each transition is successful. This
eliminates expensive query operations to HCA hardware to query current QP states in speed path
operations. This state caching is also critical to user mode verb implementations.

6.5.3. User Mode Interactions when creating a QP
 When creating a QP for user mode, the user mode vendor specific library may be required to perform
special functions in order to create the Work Queue element memory required by the HCA in user
address space. This is necessary to support direct user mode communication with the HCA for speed
path IO operations. Some typical sequences are shown below.

1. When the vendor plugin uvp_pre_create_qp () the vendor user mode library allocates memory
required for holding the WQE rings. The virtual address, size information is passed to the kernel
mode driver via the umv_buf_t structure.

2. Kernel mode driver perform validity of the user mode memory passed, and then pins the pages
using available OS interfaces. Please consult the raw IO patches for kiovec interfaces to
perform this on Linux.

3. The kernel mode driver also registers this memory, so that the L_KEY can be used to inform
the HCA about where the WQE rings are located in system memory. This internal memory is
registered only for local access and could use the PD for the QP itself as a protection domain
for such registrations.

4. Kernel mode driver also needs to indicate the HCA about valid doorbell segment for this QP in
user mode. This is required so that if a doorbell is received from a doorbell space that is not
authorized, the HCA will not malfunction, but rather ignore the doorbell ring and not process the
WQE’s erroneously.

From now on the user mode does not need to make kernel transitions for submitting work requests. The
vendor specific code could format data as required by the HCA, and notify the HCA via the doorbell.

6.5.4. Destroying a QP
A client calls the DestroyQP verb in order to release QP resources back to the verb provider driver.
Typically the destroy operation would involve informing the HCA via the DestroyQP administrative
command, which performs DestroyQP operation. Once the QP is destroyed, HCA driver must
guarantee that the QP is now returned to reset state, and that any pending completions on behalf of the
QP is flushed with error.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 41

The destroy QP verb is a synchronous call, and it will block the caller until all callbacks in progress
complete.

NOTE
Verb provider must guarantee the following. This is particularly important if the HCA driver is keeping
data-structures and context on behalf of the QP in the Completion Queue tracking structures. Vendors
may need this capability to provide additional functionality, or to supplement hardware behavior. As an
example consider the following scenario.

1. Verb consumer has pending completion queue entries that still remain and are not retrieved via
the ci_poll_cq ().

2. Consumer calls the ci_destroy_qp ().
3. There are no active callbacks in progress, so the consumer has destroyed QP context and

successfully returns from the verb.
4. Verb consumer now calls ci_poll_cq (). If this call requires context related to the QP, then such

data must still be available to complete the call successfully. The CQ entries being retrieved
cannot fail because the QP was destroyed.

The same requirement exists for performing ci_modify_qp () that resets the QP state. This requires that
the WQE’s will be start from the beginning of the WQE ring and should ensure that the verb must be
still able to retrieve earlier completions that existed in the CQ before the QP RESET was performed, as
part of the ci_poll_cq () interface.

6.5.5. Important Notes to HCA Driver Writers
This section documents some important issues to keep in mind when writing HCA drivers, especially
related to maintaining QP related information.

1. A verb provider must track for QP overflow information. If the consumer submits more requests
without processing the corresponding completion records could cause a queue full condition to
occur.

2. The Completion Queue processing often requires some tracking to happen on the Queue Pair
handle. This is required to keep track of completions. It is important that the driver writer not
have cross locks between the ci_poll_cq () and the ci_post_send () routines. This may affect
the performance since the post and poll routines would be single threaded.

3. When the QP is being destroyed or a QP is being reset, information necessary to track
completions must not be lost. An example would be, some HCA implementations might require
tracking additional context as part of the QP handle in order to process completions per WQE.
Say to report the Work Request ID (WRID) in the WR. Destroying a QP, or performing a
RESET operation on the QP must not affect or alter the ability to poll existing completions in the
CQ.

4. When a QP is being destroyed, or transitioned to RESET state should not affect the client
ability to Poll the CQ, or affect reporting completions on other QP’s that may be bound to the
same CQ.

5. When a QP is transitioned from RESET to Init State, the WQE processing always starts from
the first WQE. In cases where the QP is either being DRAINED, or moved from SQErr to RTS
state, the WQE’s are processed from where it stopped last

6. If the QP was part of a multicast group, then remove this QP from all groups this QP is a
member.

7. Ensure that no callbacks will be generated once the ci_destroy_qp () call has successfully
completed.

8. Properly manage reference counts on the CQ and PD on behalf of this QP. If not properly
managed, could lead to resources that can never be destroyed.

 March 23, 2003

42 Verb Implementer’s Guide

9. Preserve any context on behalf of the QP that may be required to process any pending
completion queue entries.

10. Deallocate memory, and free VPTT resources used to register memory region to hold the WQE
rings.

11. Ensure that any connected QP or EE has expired the TIME WAIT state before returning the QP
back to free pool as use to another consumer.

12. If ci_destroy_qp () has completed successfully, and the same QP was re-allocated via a
ci_create_qp (), then any old pending events in the event queue must not be delivered to the
new owner of the QP. Vendors may choose to track this condition and not return the QP to the
free list, until it is certain that no new events are pending that needs to be reported.

6.6. Managing End-To-End Contexts
Some vendors may implement End-To-End contexts as a special attribute to queue pairs. Hence the
allocation of a local EEC may be nothing more than allocating a QP from the QP resource pool. The
only difference is the during the creation time, the other QP attributes such as WQE base, PD etc do
not need to be specified in the administrative command. Hence the QP_HANDLE and the EE_HANDLE
can effectively be the same in the example driver under discussion. The algorithm as shown in Figure
6-9 must be used for EE allocation.

The local EE state management is also identical to the QP state management as specified in the IB
Spec. Figure 6-11 illustrates the different states and the actions permitted on the local EEC in each
state.

6.7. Special Queue Pair Management
The management of special QP is very vendor specific; hence we will only list some general concepts,
roles and responsibilities. For more specific information, please refer the programmer’s reference
manual for that specific HCA under consideration.

What is special about these QP’s are that they are multiplexed among different consumers. Hence it
creates special issues, and cannot be treated as normal QP’s.

6.7.1. SMI QP
SMI QP is also called the QP0 in the architecture specifications. QP0 is the management QP and is the
only QP required first to bring the InfiniBand nodes configured by a subnet manager. Most HCA’s may
require that the real QP0 on the HCA be used only as the special QP0. This is required since the QP
number is transmitted in the LRH when packets are sent out. It is possible to use a different QP as a
QP0 for port 0, but real QP0 cannot be used for any other purpose.

If the HCA supports an SMA on board, the vendor must expose that capability via setting the
hw_agents in the ca_attr_t structure when registering with the access Layer. This means that when
a SM needs to configure the local HCA using direct route SMPs, they would still be posted like normal
requests.

This is a special case, since for configuring the local HCA; the HOP_COUNT in the direct route SMPs
must be 0. The InfiniBand specifications require that no direct routed SMPs with hop count 0, is sent on
the wire. The expectation is that the on board processor would intercept before sending them on the
wire.

If the HCA does not posses such capability, then the SMA in the access layer controls these functions.
Since the SMA functionality is spec defined, this module is generic to any HCA. For local operations

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 43

with HOP_COUNT set as 0 for direct routed SMPs the access layer would use the ci_local_mad ()
interface to perform configure operations.

6.7.2. GSI QP
GSI QP is called as the QP1 in the architecture specifications. QP1 is the general services QP that can
be used for practically any general purpose from connection establishment to running configuration
services. Similar to the QP0 interface, the real QP1 from the HCA may be required to be used nothing
other than the QP1 functionality. Some implementations may choose to reserve these only for that
dedicated function to avoid the QP being used as an application QP.

Unlike the QP0 interface, there are no direct route issues with the QP1. Hence agents in the same node
would still get packets looped back due to the Self Address Packet (SAP) requirement, which states
that packets are looped back if the source and destination address is the same.

The only gotcha is that a performance manager, which is a vendor specific functionality and hence
cannot be resident above the Access Layer. The special QP transport service in Access Layer will
verify if the service is for a performance agent, and if the HCA does not support hw_agents, then the
ci_local_mad () is used to retrieve the information from the local HCA.

Since there is just one physical QP1 for each port, the access layer provides other mechanisms to
abstract and provide a QP like service.

6.7.3. Event Generation
All HCA vendors are expected to generate asynchronous events as required by the InfiniBand
specifications for notifying software layers about this exception condition. However there are some
possible choices to permit flexibility for HCA vendors.

If the HCA supports ability to generate events when a port is available (i.e. port is in ACTIVE or
ACTIVE_DEFER states), then the HCA must generate an event to indicate that the port is available.

NOTE
The IB Access Layer depends on this functionality for a lot of the plug and play aspects of the driver. If
this notification is not supported, certain drivers may not be loaded or unloaded as expected. It is
strongly suggested that the HCA vendor support this feature. Even though the InfiniBand specifications
suggest this as a HCA capability advertised by the HCA driver, this would be a required attribute for the
software to work correctly.

6.7.4. Trap Generation
Certain HCA’s may not support on board processing ability for processing of SMP or MAD messages.
Such implementations would use the asynchronous event method. The event structures defined in
ib_types.h can be used to indicate such conditions.

Table 6-3 Extended Asynchronous Events

Feature Comment
IB_AE_PKEY_TRAP Local HCA generating P_KEY violation Trap
IB_AE_QKEY_TRAP Local HCA generating Q_KEY violation Trap
IB_AE_BUF_OVERUN Excessive buffer overrun threshold reached
IB_AE_LINK_INTEGRITY Local link Integrity threshold reached
IB_AE_MKEY_TRAP Bad M_KEY access attempted

 March 23, 2003

44 Verb Implementer’s Guide

6.8. Completion Queue Management
Each Send and Receive Queue must be associated with a CQ. The CQ is the only means for a verb
consumer to obtain completion information from the associated queues. The association between the
QP and the CQ remains until the QP is destroyed.

CQ Handle is used to track CQ specific information. CQ’s have the following properties or restrictions
on their usage.

Some of the parameters that decide the size of the Completion Queue which are vendor specific: -

• Size of each completion queue entry
• CQ entries are written to by HCA and read from verb interfaces to poll completion queue

entries.
• Total number of WQE’s in send and receive queue of a QP being associated with this CQ
• Number of QP’s associated with the CQ.

Vendor may have additional restrictions on memory start address alignment restrictions, which the
vendor specific code in kernel and user mode would manage co-operatively.

A sample of elements that would be typically tracked by an HCA vendor is shown below in Figure 6-12.
Each vendor requirement is unique, please consult the programmers reference manual for the
component that you are using to evaluate additional requirements.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 45

CQ
Configuration

L_KEY of CQE ring in system
memory

CQ Number

Pointer to Per -WQ
Data Stucture List

Housekeeping

Back Pointer

Forward Pointer

Pointer to First CQE

CQ SIze

Reference Count

Pointer to Next CQE to Read

CQ Lock

Handle to Protection Domain /
Doorbell Space

Pointer to Last CQE

Figure 6-12 CQ Handle

6.8.1. Managing CQ for User Mode Access
Completion queues are a critical part to enable direct IO from user mode. In order to facilitate this the
basic requirements are: -

• Completion Queue Entry ring must be located in user mode, so that when notifications are
done, the entries can be pulled directly from user mode.

• Doorbell method available for the CQ from the process address space using which the doorbell
can be enabled to generate events to indicate future completion notifications.

 March 23, 2003

46 Verb Implementer’s Guide

The sequence of operations that a verb provider library in user mode would perform in conjunction with
the kernel mode driver is listed below: -

1. When the vendor plugin call uvp_pre_create_cq () is called, the library performs memory
allocation to satisfy the HCA specific requirements, and passes the buffer and size to its kernel
mode driver via the umv_buf_t structure.

2. The proxy agent in kernel passes this data to the kernel mode driver. The kernel mode HCA
driver will pass the data back to the kernel mode Verbs Driver.

3. HCA driver now is required to perform any specific setup to create this completion queue. As
part of this setup, the driver will internally register the memory, so that the HCA can DMA
completion records directly to user mode.

4. Notifications are directed to the proxy, which facilitates arranging notifications to the client
informing about an interrupt condition.

5. Now the ci_poll_cq () needs to only reformat data as expected by the consumer. As part of the
poll, the vendor specific code may need to perform additional data collection from user mode to
extract any extended data that needs to be returned to the consumer, such as the context.

6.8.2. Resize Completion Queue
As described in Section 6.8, the size of the completion queue depends on the number of Queues and
the depth for which the Queues are configured. A client may choose a default size for the CQ at time of
its creation. When additional queues need to be associated with this CQ, the consumer must determine
if the current size of the CQ is sufficient. If the current size is smaller than what is required, then this
verb is called to resize the CQ. The resize operation can also be used to shrink the size of the CQ. The
verb implementation could choose if it should really shrink or keep the current size, it’s a policy left to
the implementer of the verb.

HCA’s are expected to support the resize CQ without any loss of completion records. Typical
interactions would be

1. Create a new CQ area with new requested size
2. Driver copies the old data remaining in the old CQ to the new CQ
3. Destroy the old CQ

If the resize operations fails, for e.g. existing items are more than the new size of the CQ being created,
then the operation must fail, and the old CQ is required to be left intact.

For user mode support, the interactions are similar to what is explained in Section 6.8.1. Except that the
data-copy may be performed in user mode, once the kernel mode driver has performed the physical
switch of the CQ.

6.8.3. Destroy Completion Queue
Completion queues cannot be destroyed if they have any queues still bound to the CQ. If the CQ’s
reference count is not zero, then a busy status is returned to consumer to properly cleanup references
before destroying the CQ. When the reference count is zero, this would mean any QP related context
managed as part of CQ is moved to the pending lists. All such context structures can now be removed
and memory reclaimed.

In order to ensure that any pending events be delivered before the CQ is recycled and reallocated to
another application, HCA driver must ensure that stale events are not delivered to the new owner of the
CQ. Mechanism to ensure this is vendor specific.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 47

6.9. Multicast
Multicast operations require verbs to add and remove QP’s from multicast group. The capability for
multicast support must be advertised via the ca attributes structure to indicate to the Access Layer if
such services are permitted on this HCA.

The exact management of these operations is vendor specific, and hence not discussed in any detail
here in this document.

 March 23, 2003

48 Verb Implementer’s Guide

7. Memory Management
InfiniBand Architecture provides sophisticated high performance operations like remote DMA and direct
user mode IO. In order to achieve these goals of performance, robustness and simplicity, the
architecture defines appropriate memory management mechanisms.

Memory management provides a mechanism to allow the consumer to describe a set of virtually
contiguous memory locations or a set of physically contiguous memory locations to the HCA. The HCA
uses these descriptions to perform DMA operations to and from host memory without intervening the
host CPU. For the purpose of this discussion we will assume that the HCA has two different memory
registration resources.

• Region Entry – which holds the parameters, required describing the registration, such as virtual
address, length, access rights, the R_KEY and L_KEY values.

• Translation Entries – Which represent the different physical pages that describe the translation.

For simplicity we will assume that the two regions can be completely different and managed as
separate resources.

7.1.1. Memory Management Verbs
Memory Registration is a process that describes virtual memory, or a set of physical pages to the HCA.
Memory registration verbs produce 2 distinct keys as described by the InfiniBand Architecture.

L_KEY A 32bit opaque quantity that specifies local access rights for a memory region
R_KEY A 32bit opaque quantity that specifies remote access rights for a memory region

The HCA uses these keys in combination with the virtual address to determine the exact physical pages
that needs to be considered in a data transfer operation.

7.1.1.1. Register Memory Region
Register memory region verb prepares a virtually addressed memory region for use by the HCA. The
primary input parameters are

• HCA handle
• Protection domain
• Virtual address of memory region being registered
• Length of bytes being registered
• Access Control rights for local and remote access

On successful completion this verb returns the following to the verb consumer.

• Memory region handle
• L_KEY
• R_KEY (Optional)

Some of the data the needs to be tracked as part of memory handles is listed below

• PD Handle – Required to keep reference counts for Protection Domain objects
• Virtual Address & Length – Represent the original virtual address that was provided by the

verb consumer
• Region entry – Points the region entry block that represents this registration
• TE Ref counts – This is used when performing shared memory register that shares the same

translation indices.
• List of locked pages – This member represents the pages represented by this translation.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 49

The steps involved to perform a memory registration are
• Validate parameters if local & remote access rights provided are consistent
• Increment reference counts to the protection domain being provided
• Obtain and populate VPTT resources necessary to register this memory region.

An example of the flow of events is shown below in Figure 7-1. In the chart, for physical mode
registrations, the verb is required to generate a pseudo virtual address. It is important to note that the
applications cannot use this as a valid address in the process address space. The generated virtual
address is only for the purpose of the HCA to identify the translation entries so that it can locate the
physical pages where the IO must be performed.

7.1.1.2. Register Physical Memory Region
Register Physical Memory region, is logically similar to Register Memory Region with the following
differences.

• No need to pin memory down, since it is expected that memory is already pinned.
• Consumer passes a list of memory pages, page size for the buffers, the offset in the first

page for the region being registered, and the length of the region being registered.

The process of registering memory is same as presented in Figure 7-1, except that the memory it is not
required to pin pages down. The consumer passes a requested virtual address, if this address is not
acceptable to the HCA driver; it is permitted to pass a new virtual address back to the consumer. The
major differences between the physical memory registration and register virtual memory is shown as a
“gray” box in Figure 7-1.

7.1.1.3. Re-Register Memory Region
Re-Register memory region is logically equivalent to a memory de-registration followed by a
registration. HCA drivers may choose to optimize re-use of resources to the extent possible. For
example, if the number of pages required is less than or equal to the previous VPTT resources held by
the previous registration, then the VPTT resources can be reused in this registration.

HCA driver must de-reference the count on the old PD if its different from the new PD for which the
memory region is being registered.

 March 23, 2003

50 Verb Implementer’s Guide

Register

Parameters
OK? No INVALID_PARAMS

pd_refcount++

Allocate VPTT

VPTT entries
Valid

INSUFFICIENT
RESOURCES

X

Return to User

Yes

VPTT
Fill

Success

if error
{
 Free MDL
 Free VPTT
 pd_refcount--
}

No

Fill VPTT Entries

Yes

Perform
Admin Command

Yes

SET STATUS

No

Pin Pages

Compute new
Virtual AddressPhysical Mode

Registration?
Yes

No

Figure 7-1 Register Memory Region

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 51

NOTE
InfiniBand Specifications requires that the memory handle produced by either register virtual or register
physical memory can use the same handle for a re-register memory region, or register shared memory
region call subsequently. Hence to appropriately un-pin pages it is required that the HCA driver
performs some tracking on how the handle was constructed, so the de-registration process can deal
with the correct treatment of these handles and perform the necessary unpinning of user mode buffers
submitted during the register call.

7.1.1.4. Query Memory Region
Query memory region verb returns the properties of the registered memory region. The attributes that
this verb returns are listed below.

• Memory protection bounds, obtained from the region handle maintained by the driver.
• PD handle obtained from the region handle maintained by the driver
• L_KEY and R_KEY of the registered region.

The methods to obtain these could be simply stored in the handle themselves, or vendor could have a
unique way to retrieve them.

7.1.1.5. Register Shared Memory Region
Register shared memory verb provides an existing region handle, and requests another registration be
performed. The protection domain and the access rights can be different from the reference handle
provided as input. Depending on the implementation of VPTT by a specific vendor it may or may not
allow sharing the registration resources. Since VPTT areas could be quite large depending on the size
of the region being registered, any sharing to take advantage would be a good utilization of resources.

The vendor implementation must also guarantee that the VPTT resources will maintain proper
reference counts so that if one region is being de-registered, the VPTT resources are not freed. This
would cause severe malfunction and cause system memory corruption.

In the example flow for the shared registration process, we assume that the VPTT resources can be
shared.

In the figure below, master_mr refers to the original memory region. The slave_mr refer to the newly
registered memory region that is sharing the translation resources with the master memory region.

 March 23, 2003

52 Verb Implementer’s Guide

Register

Parameters
OK? No INVALID_PARAMS

pd_refcount++

INSUFFICIENT
RESOURCES

X

Return to User

Yes

Allocate VPTT
Resources

VPTT
Valid ?

if error
{
 Free VPTT
 pd_refcount--
}

Inform HCA

Yes

SET STATUS

No

Compute new
Virtual Address &

Key

Lock master_mr
master_mr->vptt_refcnt++
Add slave to master list
slave->master_mr=master_mr
Unlock master_mr

Figure 7-2 Register Shared Region

7.1.1.6. Destroy Memory Region
When a consumer has no more need for a registered memory region, this verb can be used to release
the translation resources back to the Channel Interface. Some of the primary responsibilities for this
verb are listed below:

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 53

Start

TE
RefCnt > 0

?

Lock Master
mr->lock

Shared
Slave?

mr->vptt_refcnt--

Unpin
Pages

Yes

Free VPTT
records

Region
is

Virtual?
No Yes

Unlock
mr->lockYes

Free VPTT
pd_refcnt--

UnPin
Pages

Master VPTT
Virtual?

No

No

Yes Free Master VPTT
pd_refcnt--

Unlock
mr->lock

Return to User

Figure 7-3 Destroy Memory Region

In the above example flow, the key points to note are.

• Maintaining a reference count on the shared VPTT resources
• If the registered memory region has no more shared registrations, then the memory region is

unpinned.
• The current RE is always freed back to free pool.
• The master is not freed until there are no more regions sharing the VPTT record space.

Please keep in mind the above are only sample choices, each vendor situation is different. Please refer
to the programmer’s reference manual of the HCA for more information.

7.2. Memory Windows
InfiniBand architecture defines memory windows to provide a more efficient way to grant access rights
to remote end nodes in a more dynamic fashion than using proper memory registration. Memory
Windows allow the verbs consumer in the following situations.

• Need to grant and revoke access rights to a remote end node.
• Need for different access rights to different remote agents, for different regions of memory

previously registered by the client.

 March 23, 2003

54 Verb Implementer’s Guide

In order to utilize memory windows, a verb consumer must register a region of memory, and then open
different regions for access using memory windows. A typical sequence would be as follows.

1. Client registers a memory region.
2. Allocates a memory window
3. Posts a Memory Window Bind.
4. Posts a Send to exchange R_KEY information with remote agent.
5. After indication that the intended remote operation completed, the verb consumer unbinds the

window by posting with a length of zero.

After unbind the verb consumer can utilize this window entry to point to a different memory region and
perform similar use of bind and unbind operations. Memory Window bind operation is useful for the
following reasons.

• Very light weight compared to normal memory registration that requires pinning down memory.
• Operations can be performed from user mode without taking a kernel transition compared to

memory register operations that require kernel transitions to enforce validation and performing
the operation of locking down user memory pages.

• Protects the R_KEY from being utilized for stale requests. Each time a new bind is issued the
R_KEY must be different from the old one. This ensures that stale requests will not succeed,
since the R_KEY will be different between each bind operation.

NOTE
HCA drivers must ensure that the PD reference counts are maintained properly when utilizing memory
window verbs. User mode code must maintain its own copy of PD reference counts other than what is
maintained in kernel, since the post window bind operations

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 55

8. Work Request Processing
Work Request processing encompasses the operation of submitting work requests to the HCA for
processing. HCA driver converts the Work Request to internal WQE formats, which is vendor specific.
HCA driver converts the Work Request, which is a generic work description to an internal format
specific to the HCA.

• Send WQE – To allow Send Command.
• RDMA Read – For posting RDMA Read commands to the Send Queue
• RDMA Write – For posting RDMA Write commands to the Send Queue
• Atomic – Posting Compare Exchange and Fetch add IB commands on RC/RD QP’s Send

Queue
• Memory Window Bind – Posting a memory window bind command to the Send Queue of a

RC/RD queue pair.
• Receive – This is a generic WQE for posting Receive commands to the Receive Queue of any

type of QP.

Once the work is formatted in a WQE the user vendor specific code informs the HCA to indicate that
work is available via writing to the doorbell space. This operation may be permitted from user mode, if
the doorbells are mapped to user mode.

If the verb has knowledge on available WQE’s, then it can format more than one request and inform the
HCA that there are n# of WQE’s available. In order to permit this facility, the Linux implementation of
the ci_post_send () verb accepts extra parameters. Please consult the file ib_ci.h for more information.

• h_qp refers to the Handle to the QP for which the work request is submitted.
• A Pointer to head of the list of work requests.
• A pointer to pointer of failed work requests, which could not be submitted.

WR1 N WR2 N WR3 N

p_send_wr

N

pp_failed

Figure 8-1 Initial Post Parameters

The list must be a null terminated list. If any of the requests was not submitted, then the driver will
terminate the list with only successful requests submitted. The failed list will point to the first request
that failed the post operation.

WR3 N

p_send_wr

WR1 N WR2 N

pp_failed

Figure 8-2 Post Parameters on Completion

In the above example, two work requests were posted and the hence the list was terminated at WR2.
pp_failed parameter is set to the first WR that was not successfully posted.

 March 23, 2003

56 Verb Implementer’s Guide

8.1.1. Posting Work Requests
Posting Work Requests to the QP involves the following steps.

1. Verify if current QP state is appropriate for the post operation. For e.g. if QP is not in Init, RTR
or Reset states when a WR is posted to the Send Queue.

2. Verify any other parameter checks that require returning an immediate error on post operations.
3. Ensure that there is a WQE available for posting this work request.

• HCA driver must ensure that the WQE’s won’t be overwritten. A client can expect to keep
posting, and expect to receive IB_INSUFFICIENT_RESOURCES as error value. This error
must not change the state of the QP, or other work requests already posted.

• It is also important that the design does not require locking between the poll and post
operations, since these are speed path critical for performance and the driver should
attempt to not single thread both the activities.

4. Prepare the WQE based on the operation type and the QP type as required by the HCA. The
vendor specific code may require to do additional checks, or housekeeping say to retrieve the
Work Request ID (WRID) etc in a vendor specific way.

5. Indicate to the HCA that work is now available via writing to the doorbell space.

NOTE
HCA drivers storing the WRID for later retrieval should keep fast access methods to that there is no
expensive search when the ci_poll_cq () call is made. Optimizing for performance is critical in this area.

8.2. Completion Processing
Completion queue processing encompasses operations permitted on a CQ. This would include polling a
CQ for completion entries and enabling a CQ for notification when the next CQE is added to this CQ.

8.2.1. Polling Completion Queue
PollCQ retrieves work completion from the specified CQ. Work Completion indicates that a WR
submitted to a QP associated with this CQ has completed. The CQE contains important information
necessary to the consumer to identify the work request submitted, the status of the operation etc. The
important fields reported by a CQE are: -

• 64bit WRID submitted with the WR when posted to the QP
• Type of the operation that was completed.
• Length of data sent/received
• Source QP/EE for datagram QPs.
• Path Attributes necessary to communicate with the remote end for UD QP’s.
• Free count indicating the number of WQE’s freed by this completion queue entry for RD QP’s.

This is required since the completions may be reported out of order by the HCA. This
information can be used in conjunction with the Post WR verbs to ensure that WQE rings do not
overflow.

The poll verb in the Linux implementation accepts two lists.

• One to provide a list of free WC’s to the poll_cq verb.
• A second one to provide a list of successfully polled CQE’s.

The list of CQE’s successfully retrieved is a null terminated list. Hence the chain that was submitted to
the ci_poll_cq () verb will break the list and give it back to the consumer with a list that is free, and a list
that has completion processing done. The parameters when the call to ci_poll_cq () is made are shown
below in Figure 8-3.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 57

CQE1 N CQE2 N CQE3 N

pp_free_wc_list

N

pp_done_wc_list

Figure 8-3 Initial PollCQ Parameters

In this example we assume that two entries are retrieved via the poll call. The state of the parameters is
shown below in Figure 8-4.

CQE3 N

pp_done_wc_list

CQE1 N CQE2 N

pp_free_wc_list

Figure 8-4 PollCQ Parameters on Completion

The list interface was provided for possible optimizations possible with hardware interactions. Most
receive side processing will have many receive descriptors and would avoid the user making repeated
calls. A second benefit is that in order to prevent CQ overflow, the HCA driver may require notifying
hardware on the number of completions retrieved. This facility essentially reduces the number of times
the HCA needs to be notified, and thereby reducing the number of device IO transactions on the bus.

8.2.2. Requesting for Completion Notification
Requesting completion notification requests the verbs provider to call its completion handler when the
next completion entry of the specified type gets added to the specified CQ. The notification must not be
generated for entries already existing in the CQ. InfiniBand Specifications specify two types of
notification requests.

• Notify only on the next solicited completion event only
• Notify on the next solicited or unsolicited completion.

HCA hardware will maintain a CQ state to manage this notification request. The driver software and
HCA hardware compliment each other in managing these notifications. This operation can be invoked
from the user mode. Most HCA vendors may provide a doorbell space to inform the HCA about the type
of notification request being made.

8.2.3. Important CQ related Notes to Driver Writer
HCA hardware and software must work together to achieve the required behavior. Lists of potential
issues are listed below: -

1. HCA driver and hardware must co-manage and ensure that CQ overflow is prevented. CQ
overflow is not recoverable and the first QP that caused this error would enter error state. The
expectation is that existing entries are available to consumers without loss of CQ entries.

2. A QP may be reset, or destroyed. Such actions must not intervene with the ability to report
completions on behalf of the CQ. Vendors using alternate store to track work request ID’s must
take special care that old completions not yet retrieved will still be reported correctly with the
exact WRID’s submitted when the WR was posted.

 March 23, 2003

58 Verb Implementer’s Guide

3. Driver writers must strive to have no locks between the post and poll side of the verbs. This is
purely a performance concern that may otherwise compromise work request processing by
serializing the completion processing and posting of work requests.

4. When CQ’s are destroyed, HCA driver must ensure that any undelivered events to the CQ
owner will not be delivered to a new CQ owner.

5. When QP’s are destroyed, the HCA driver must ensure that the QP’s are not made available
until the time wait period has expired.

6. When a CQ is being notified to report an event for new entry added to the CQ, the driver
software and hardware would require to ensure that a notification for an existing entry in the CQ
will not cause an event to be generated.

7. Race free notification request is critical, i.e when the client issues a notification request, the
HCA may be in process of generating the CQ entry. Due to hardware latencies or Chipset
behaviors the entry may not have yet made its way to the system memory. HCA driver and the
hardware must have some mechanism to guarantee that events or CQ entries will not be lost in
flight.

8.3. Avoiding Race between Polling and CQ Arming
InfiniBand specifications require the verb consumer to poll all entries to completion. There is always a
race between the polling and rearm action. This is due to the fact that the hardware keeps placing
entries in the CQ, and the poll is an asynchronous operation. In addition the InfiniBand specifications
require not generating interrupts for entries already existing in the CQ. In order to avoid this race and
ensure that either the completions are pulled out during a poll operation, or be guaranteed of an
interrupt generation, the following sequence of arming and check is recommended.

cq_notify_callback()
{
 boolean_t rearm_needed = TRUE;
 ib_wc_t *p_empty, *p_filled = NULL;

recheck:

 p_empty = get_free_elements ();
 poll_status = ib_poll_cq(h_cq, &p_empty, &p_filled)

 if ((rearm_needed == FALSE) && (filled == NULL))
 {
 return;
 }
 /* Put free elements back */
 if (p_empty)
 return_to_free (p_empty);
 /* Got new entries, process them */
 process_elements(p_filled);
 ib_rearm_cq (h_cq);
 rearm_needed = FALSE;
 goto recheck;
}

Figure 8-5 Poll CQ / Rearm Algorithm

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 59

9. Interrupt and Event Processing
Interrupt processing is the primary notification from the hardware that a serviceable condition has
occurred. Most of what happens here is completely vendor specific, hence we will provide some
general information that might be applicable to most HCA vendors.

InfiniBand HCA’s have numerous resources, such as QP’s, CQ’s with several thousands of them in
certain configurations. Each resource can generate an event, which is an interrupt condition. Interrupt
generation and servicing the interrupt at this rate can cause severe performance degradation. The
event queues provide a nice alternate to traditional interrupt scheme for these resources.

Interrupts are mostly one shot in the HCA. When a first entry is added to the EQ and if the EQ were
requested to generate an interrupt, then the HCA would generate a physical interrupt. Unlike traditional
IO devices, the HCA’s do not stop functioning once the interrupt is delivered. It still keeps functioning
and uses the event queue for notifying future completions and error conditions.

Interrupt routines typically schedule a tasklet in Linux for deferred processing. In the deferred
processing mode, each event queue entry is processed, and the appropriate owner is notified of the
event. The tasklet typically processes all events submitted before requesting for an interrupt generation
the next time. Functionally they work similar to how the CQ’s function, i.e. CQ entries are generated
and processed by client until there are no more completions. Then the client requests the HCA to
inform when a new CQ entry is added to the CQ.

NOTE
The entire InfiniBand stack assumes that no callbacks are generated from interrupt context. The
purpose is that the stack uses the light weight spin-lock method, and does not stop interrupts from
happening. The lock ordering is also very important, spinlock_bh () followed by spin_lock_irq () works
fine. If the stack used spinlock_irq () followed by spin_lock_bh (), this does not guarantee that interrupts
are disabled, hence may end up with critical sections not locked.

Verbs Provider driver is the only driver that would require spin_lock_irq () to protect its resources,
Hence all Verbs provider drivers must issue all completion and event callbacks from a tasklet context
for the lock ordering to work correctly.

 March 23, 2003

60 Verb Implementer’s Guide

10. User Mode Support via Plugin
Throughout the entire document, we have shown some recommended procedures to handle native
user mode support. These are guidelines, and individual vendors may choose to have other alternative
approaches, within the framework provided by the Access Layer. Please refer to the header file
ib_uvp.h to understand the different plugin API’s and how to work with AL to provide native user mode
support as a HCA vendor.

The following table highlights how to handle different error cases and how success or failure is
determined.

Table 10-1 Error Case Handling with user mode Plug-in

No. Pre-ioctl Kernel Ioctl Post-ioctl Comments
1. SUCCESS SUCCESS SUCCESS Return successful return and pass handle

back to user mode consumer.
2. SUCCESS SUCCESS FAILURE If any resource was allocated by the ioctl,

such as say create_qp (), then the QP is
released. Failure is returned to the consumer.

3. SUCCESS FAILURE FAILURE If the kernel ioctl was a failure, the post
routine must return failure. The access layer
will assert if the plugin returned SUCCESS.

4. FAILURE NOT DONE NOT DONE If the pre-ioctl call fails, then the ioctl operation
is itself not performed.

The user mode plugin must rely on the status in the UMV_BUFFER that is kept for communication
between the user mode and kernel mode components. If the UMV_BUFFER is carrying a bad status, it
is expected that the kernel mode verb also returned bad status, and fails the resource creation call.

The post-ioctl plugin call is invoked always if the ioctl to kernel is performed. This is designed so that
the user mode plugin gets a chance to cleanup any resource allocated due to an invocation of the pre-
ioctl plugin.

When the plugin returns failure to a post-ioctl plugin, if the effect of the ioctl is a resource creation, then
the cleanup will be performed, before returning bad status to the verb consumer. For calls such as
modify operations, the post-plugin is mostly a informational notification. Hence no ioctl will be
performed. For e.g. if the call was a modify QP to RTS, this cannot be reversed back to old state. On
such API’s the access layer code may perform asserts to ensure that correct status is returned by the
verb plugin’s.

 March 23, 2003 Intel Corporation

 Verb Implementer’s Guide 61

 March 23, 2003

	Introduction
	Purpose and Scope
	Intended Audience
	Document Organization
	Conventions
	Reference Documents
	Commonly Used Acronyms
	Definitions and Commonly Used Terms
	Revision History

	Overview
	InfiniBand Overview
	Channel Adapters

	Software Architecture Overview
	Verbs Provider Driver
	Verbs Driver Architecture
	Verb Groups
	Byte-Ordering Conventions
	Verb Classes

	Driver Initialization
	Identifying Host Channel Adapter
	Initializing the Host Channel Adapter
	Memory Management

	Address Vector Initialization
	Important User Space AVT Considerations

	Event Queue Initialization
	Sizing the Event Queue

	Setting up Multicast

	Transport Resource Management
	Accessing the HCA
	OpenHCA
	QueryHCA
	ModifyHCA
	CloseHCA

	Protection Domain
	Protection Domain Allocation
	Preparing Doorbells for User Mode Access

	Reliable Datagram Domain
	Address Vector Management
	Address Handles Allocated in Kernel mode
	AV Handle for Kernel Mode Address Vectors
	User Mode Access for Kernel Mode Address Vectors

	Managing AV Entries in user mode
	User Mode access for Address Vectors in User Address Space

	Managing Queue Pairs
	Creating Queue Pairs
	Queue Pair Handle

	Modifying QP Attributes
	User Mode Interactions when creating a QP
	Destroying a QP
	Important Notes to HCA Driver Writers

	Managing End-To-End Contexts
	Special Queue Pair Management
	SMI QP
	GSI QP
	Event Generation
	Trap Generation

	Completion Queue Management
	Managing CQ for User Mode Access
	Resize Completion Queue
	Destroy Completion Queue

	Multicast

	Memory Management
	
	Memory Management Verbs
	Register Memory Region
	Register Physical Memory Region
	Re-Register Memory Region
	Query Memory Region
	Register Shared Memory Region
	Destroy Memory Region

	Memory Windows

	Work Request Processing
	
	Posting Work Requests

	Completion Processing
	Polling Completion Queue
	Requesting for Completion Notification
	Important CQ related Notes to Driver Writer

	Avoiding Race between Polling and CQ Arming

	Interrupt and Event Processing
	User Mode Support via Plugin

