

IBA Software Architecture
uDAPL

High Level Design

Draft 2

August 2002

Revision History and Disclaimers

Rev. Date Notes
Draft 1 July 2002 Internal review.
Draft 2 August 2002 Feedback incorporated from internal review.

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel
disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this
specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

This Specification as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel
Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or
any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the express written consent of Intel Corporation.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002 Intel Corporation.

Abstract
The uDAPL over IB provides standardized user mode API over IBA fabrics as defined by the DAT
Collaborative. Implemented as a standard Linux shared object, it interfaces to the IB – Access Layer.
The uDAPL gains access the HCA and subnet management services through the Abstraction Layer. All
uDAPL data transfers use the reliable connection service.

The primary responsibilities of the uDAPL library are performing name to address translation, establish
connection and transfer the data reliably.

Contents
1. Introduction .. 1-1
1.1 Purpose and Scope ...1-1
1.2 Audience..1-1
1.3 Acronyms and Terms ..1-1
1.4 References ..1-1
1.5 Conventions...1-2
1.6 Before You Begin ..1-2
2. Design Overview .. 2-3
2.1 Requirement for uDAPL ..2-3
2.2 System Structural Overview ..2-3
3. Design Details... 3-1
3.1 Resource Manager ..3-1

3.1.1 Interface Adapter...3-2
3.1.2 Event Dispatcher ...3-2
3.1.3 Consumer Notification Object ...3-3
3.1.4 EndPoint..3-4
3.1.5 Local Memory Region & Remote Memory Region....................................3-5

3.2 CM Service ..3-6
3.2.1 Connection Qualifier..3-6
3.2.2 Address Translation ..3-6
3.2.3 Connection Protocol ..3-7

3.3 Data Transfer & Completion Service...3-13
3.3.1 Data Transfer Service ...3-13
3.3.2 Completion Service ...3-13

3.4 API Mapping – Summary...3-16
3.5 Debug Services ...3-19
4. Data Structures and APIs .. 4-1

4.1.1 RAS Support ...4-11
5. Installing, Configuring, and Uninstalling ... 5-1
5.1 Installing...5-1
5.2 Configuring ..5-1
5.3 Uninstalling ..5-1

Figures
Figure 1 uDAPL Model..2-4
Figure 2 uDAPL Overview ..2-4
Figure 3 uDAPL Components ...2-5
Figure 4 Major Components of IA...3-2
Figure 5 Major Components of EVD...3-3
Figure 6 Major Components of CNO ..3-4

Figure 7 Major Components of EP..3-4
Figure 8 Major Components of LMR...3-5
Figure 9 Major Components of RMR ..3-6
Figure 10 Passive Side States..3-8
Figure 11 Active Side States...3-9
Figure 12 CM Callback handler Flow..3-12
Figure 13 Completion Flow...3-14
Figure 14 DTO Callback Handler Flow ...3-15
Figure 15 EVD Wait flow...3-16
Figure 16 Structure/Context Relationship...4-1

IBA Software Architecture
uDAPL

High Level Design

1. Introduction

1.1 Purpose and Scope
This HLD defines the implementation of all uDAPL components described in the “uDAPL
Specification”, including inter-component dependencies, and provides sufficient design detail that will
satisfy the product requirements as specified.

1.2 Audience
Anyone interested in understanding this implementation of the Architecture Specification should read this
document, including:

• Software developers who are integrating the separate modules into their own software projects
• Hardware developers who need an understanding of the software behavior to optimize their designs
• Evaluation engineers who are developing tests for Infiniband-compliant devices
• Others in similar roles who need more than a basic understanding of the software

1.3 Acronyms and Terms
DAT: Direct Access Transport

DAPL: Direct Access Providers Library

SDP: Sockets Direct Protocol (A Socket emulation protocol specified for Infiniband)

TOE: TCP Offload Engine (Hardware that supports offloading TCP/IP protocol from host)

IPoIB: IP-over-Infiniband (and IETF defined RFC to send IP packets on Infiniband fabric)

IBA: Infiniband Architecture

CNO Consumer Notification Object

EVD Event Dispatcher

DTO Data Transfer Operation

LMR Local Memory Region

RMR Remote Memory Region

1.4 References
UDAPL

User-mode Direct Access Providers Library Version 1.0

 1-1

IBA Software Architecture
uDAPL

High Level Design

Infiniband
Infiniband Architecture Specification, Version 1.0a, http://www.infinibandta.org/

IP over IB IETF draft: http://www.ietf.org/ids.by.wg/ipoib.html

Infiniband Specification Annex A4 - Sockets Direct Protocol (SDP), Release 1.0.a

Device Drivers
Rubini, Alessandro and Corbet, Johathan. Linux Device Drivers Book, 2nd Edition: O’reilly, June
2001. ISBN: 0-59600-008-1. http://www.xml.com/ldd/chapter/book/

1.5 Conventions
This document uses the following typographical conventions and icons:

Italic is used for book titles, manual titles, URLs, and new terms.

Bold is used for user input (in the Installation section).

Fixed width is used for code definitions, data structures, function definitions, and system
 console output. Fixed width text is always in Courier font.

 NOTE
Is used to alert you to an item of special interest.

 DESIGN ISSUE
Is used to alert you to unresolved design issues that may impact the module’s design, function, or
usage.

1.6 Before You Begin
Please note the following:

This document assumes that you are familiar with the Infiniband Architecture Specification, which is
available from the Infiniband Trade Association at http://www.infinibandta.org.

 1-2

http://www.infinibandta.org/
http://www.ietf.org/ids.by.wg/ipoib.html
http://www.infinibandta.org/

IBA Software Architecture
uDAPL

High Level Design

2. Design Overview
The direct access transport (DAT) over an IBA software stack defines a new I/O communication
mechanism. This mechanism moves away from the current local I/O model based on attached transactions
across buses to a remote, attached, message-passing model across channels.

uDAPL is a System Area Network (SAN) provider that enables an application to bypass the standard
TCP/IP provider and use the native transport to communicate between hosts in a cluster of servers and
workstations on the fabric. This also enables the applications to take advantage of the underlying
transport service provided by Infiniband Architecture to permit direct I/O between the user mode
processes.

The primary responsibility of the uDAPL are transport independent connection management, transport
independent low latency data transfer and completion

UDAPL is intended to support following type of application

� Heterogeneous Clusters/Databases

� Homogeneous Clusters/Databases

� Message Passing Interface (MPI)

2.1 Requirement for uDAPL
The detailed requirement for uDAPL is available at DAT consortium. However here are the key
requirements

• Provide transport API mechanism to work with IB, iWARP etc.
• Provide/use transport independent Name Service
• Provide transport independent Client/Server and Peer-to-Peer connection

management
• Provide mechanism for zero copy model

2.2 System Structural Overview

 2-3

IBA Software Architecture
uDAPL

High Level Design

DAT DAT

DAT CONSUMER

DAT PROVIDER

DAT CONSUMER

DAT PROVIDER

Provider Specific
Wire Protocol

DAT
Services

Figure 1 uDAPL Model

The Direct Access Transport (DAT) Model is shown above. There are two significant external interfaces
to a Direct Access Transport service provider. One interface defines the boundary between the consumer
of a set of local transport services and the provider of these services. In the DAT model, this would be the
interface between the DAT Consumer and the uDAPL Provider. The other interface defines the set of
interactions between local and remote transport providers that enables the local and remote providers to
offer a set of transport services between the local and remote transport consumers. In the DAT model, this
would be the set of interactions between a local uDAPL Provider and a remote uDAPL Provider that are
visible to the local DAT Consumer and/or remote DAT Consumer.

U
se

r
Ke

rn
el

H
ar

dw
ar

e

A p p l i c a t i o n

u D A P L

K e r n e l
C l i e n t

k D A P L
K e r n e l
D A P L
A g e n t

D A T

C o n t r o l

N o t i n t h e
P O R

D a t a

Figure 2 uDAPL Overview

 2-4

IBA Software Architecture
uDAPL

High Level Design

Above figure illustrates generic uDAPL implementation and interaction. uDAPL is a dynamic
shared library and provide user mode APIs. This Library interacts with uDAPL kernel Agent for
any resource management but does data transfer and transfer completion in user mode without
taking a kernel transition to provide very low latency. DAT can use any physical hardware that
can provide the required characteristics. DAT is specified to support features that are subset IB
Channel Adapters and hence DAT can be directly mapped to it. Pictorial of Component
Structure

Verbs
Kernel-Mode

AL
Management

Interface
Connection

Management

Verbs User Mode
AL

Management
Interface

Connection
Management

CM
Service

Data Transfer and
Completion Service

EVD/CNO/PROXY
Internal Service

uDAPL
RealTime

DebugInterface

Resource
Manager

PnP
Service

Application

Library

User Mode

Kernel Mode

Hardware

IPoIB
Driver

uDAPL Application CmdLine Debug Tool

uDAPL Redirector

Figure 3 uDAPL Components

 2-5

IBA Software Architecture
uDAPL

High Level Design

The diagram above illustrates the major uDAPL components and various interfaces to the components
such as the uDAPL switch, Access layer and IPoIB driver.

uDAPL switch enables Interface Adapter enumeration, name service and PnP capabilities in provider
independent manner. Exact details of this component is yet to be decided

uDAPL has well defined API s that applications can use to create Event Dispatcher, Endpoint,
connections etc. Also uDAPL has private protocol interface through PIPE and acts as command line
interface debug tool.

uDAPL interfaces with the Access Layer for all Infiniband specific operation and maps the Infiniband
operation to DAT operation.

Also uDAPL uses the IP addressing scheme to establish IB connection. It uses the IPoIB driver and
Management features in the Access Layer for converting IP address to IB address and IB path records

Also uDAPL provides PnP functionality based on addition or removal of IP address. It receives IP
address change notification from IPoIB driver. Asynchronous notification from Access layer is also used
by the PnP mechanism

 2-6

IBA Software Architecture
uDAPL

High Level Design

3. Design Details
This document will deal with design of only uDAPL library and uDAPL redirection mechanism is
described in Appendix-B of the uDAPL specification.

3.1 Resource Manager
Following are the main uDAPL resources

1. Event Dispatcher

2. Consumer Notification Object

3. End Point

4. Service Point

5. Local Memory Region & Remote Memory Region

6. Protection Zone

Resource Manager creates & destroys these resources on demand from consumers. UDAPL resources are
combination of uDAPL private data structure & IB resources such as QP, CQ, PD and TPT etc. To enable
resource manager & other services handle DAT objects properly, each DAT object consist of

1. Doubly link list pointers for resource management & locating the resource

2. Spin lock for thread safe operation

3. Object type Identifier

4. State of the Object

 Following is the mapping of uDAPL resources with respect to IB access layer Resources.

UDAPL Resource IB/Access Layer Resource

Event Dispatcher CM Callback hander, CQ callback hander, Error
Handler & CQ

Consumer Notification Object Wait Object

End Point Queue Pair

Service Point Service ID

Local Memory Region & Remote Memory Region Memory Region & Memory Window

Protection Zone Protection Domain

Interface Adapter IB Port

A detail about each of these resources is described in the following sub-sections.

 3-1

IBA Software Architecture
uDAPL

High Level Design

3.1.1 Interface Adapter
UDAPL Interface Adapter is mapped to IB port. All the DAT resource created belongs to the interface
adapter. Interface Adapter (IA) has following main components.

1. Reference to Access Layer’s CA handle

2. CA GUID

3. Port GUID

4. Err Callback handler

5. Spin Lock

6. Doubly linked List of EP/SP/EVD

7. Etc

Spin Lock
EP List
SP List

EVD List

Hca handle

Access Layer Resourcess

CA Guid

Port Guid

Err Callback

uDAPL internal resources

EVD Async
IA Properties

IA Name

Figure 4 Major Components of IA

3.1.2 Event Dispatcher
The event dispatcher is the prime mover of the uDAPL. Event dispatcher is implemented using IB
Access’s layer’s callback Handler & Event dispatcher structure. So Event Dispatcher is primarily consist
of

1. Callback handler

a. Completion Queue Callback Handler

b. Connection Manager Callback handler

c. Timer Callback handler

 3-2

IBA Software Architecture
uDAPL

High Level Design

d. Error Callback handler

2. IB completion queue

3. FIFO for Software Events

4. Timer for Timeout

5. Maintenance information

WaitObject

CQ/DTO
Callback

Error
Callback

Timer
Callback

Completion
Queue

Software
Event FIFO

CM
Callback

Event Dispatcher

Maintenance Info

CNO
ResourceList

SpinLock

State

Figure 5 Major Components of EVD

To optimize IB resources, CQ is created only if DTO flag is set. If no DTO flag is set this EVD won’t be
used for DTO completion and hence no CQ is required.

Also software Event FIFO is created only on demand, which is indicated by EVD flag.

In addition to above components resource manager also creates the synchronization object (spin lock) etc
for thread safe operation and maintenance. Refer to EVD structure at the end of this document.

3.1.3 Consumer Notification Object
When consumer wants to wait on multiple event dispatchers simultaneously, same CNO is associated
with all Event Dispatcher.

 3-3

IBA Software Architecture
uDAPL

High Level Design

The Consumer Notification Object basically consists of CNO WaitObject, Timer, optional proxy agent &
other maintenance objects. Once CNO is created, it is doubly link listed with Interface adapter context for
maintenance purpose.

CNO WaitOBJ Timer
Callback

Consumer Notification
Object

From EVD Callback Handlers

Proxy Agent
EVD List
SpinLock

State

Maintenance Info

Figure 6 Major Components of CNO

3.1.4 EndPoint
The endpoint supports Data transfer operation and whose completions are posted to specified event
dispatchers.

UDAPL endpoint is combination of

1. IB queue pair,

2. Association to Tx, Rx, Connection & Bind Event Dispatcher

3. Other maintenance data structure such as sate, spinlock etc

Queue pair is not created during endpoint creation but delayed until it is actually required i.e., during
connection establishment. Endpoint also hides various IB specific QP states including QP TimeWait
state.

Spin Lock
Protection Zone
Connection EVD

Tx_Spinlock
Tx_EVD

Tx_Max_Pending
Tx_Pending

Bind_EVD

Rx_Spinlock
Rx_EVD

Rx_Max_Pending
Rx_pending

Queue Pair End Point
State

Maintenance Info

Figure 7 Major Components of EP

 3-4

IBA Software Architecture
uDAPL

High Level Design

3.1.5 Local Memory Region & Remote Memory Region
Local memory region is an arbitrarily sized, virtually contiguous area of memory in the consumer’s
address space that was registered, enabling Interface Adapter local access and, optionally, remote access.

Registering the memory involves locking down the memory, creating LKEY (LMR context), RKEY
(RMR context) and TPT etc.

UDAPL invokes Access layer to do this straightforward resource creation. The only subtle point to be
noted is for registration DAT_MEM_TYPE_SHARED_VIRTUAL uDAPL invokes ib_reg_shmid() and
for other types it uses ib_reg_mem.

Spin Lock
Protection Zone
Mem Properties

context

MemRegistration
Handle

Maintenance Info

Access Layer Resourcess

LKEY

RKEY

SHM_ID

uDAPL internal resources

Figure 8 Major Components of LMR

IB Memory window is mapped uDAPL Remote Memory Region (RMR). Creating RMR is basically
creation of RMR Context for given Protection Zone. This newly created RMR is not bound to any
specific LMR until it is specifically bound using dat_rmr_bind. So RMR create return RMR handle that
refers to following info in addition to standard maintenance info.

1. LKEY

2. RKEY

3. Protection Domain

4. EndPoint (after bind is done)

5. Etc

 3-5

IBA Software Architecture
uDAPL

High Level Design

Spin Lock
Protection Zone

context

MemWindow Handle

Maintenance InfoAccess Layer Resourcess

LKEY

RKEY

EP Handle
LMR TRIPLET

Mem Privelages

Bind Info

Figure 9 Major Components of RMR

3.2 CM Service
UDAPL Connection manager is based on implied two-way handshake mechanism. This poses no serious
problem while implementing over Infiniband connection manager, which is based on three-way
handshake mechanism.

However uDAPL CM needs to address connection qualifier mapping, Address translation etc.

3.2.1 Connection Qualifier
Connection Qualifier is mapped to Infiniband Service ID (SID). Since SIDs are used by all IB application,
it is the responsibility of the application to make sure its service ID doesn’t collide with other
application’s SID such as SDP. UDAPL directly translates ConnectionQualifier into SID and no effort is
made to identify any collision.

3.2.2 Address Translation

UDAPL uses IP address to establish IB connection to take advantage existing name service such as DNS
without any domain name import.

Since IP address is not a GID, uDAPL depends IPoIB driver’s private ioctl interface to convert IP address
to GID. Then uDAPL uses this GID to obtain pathrecord from access layer using ib_query() by
IB_QUERY_PATH_REC_BY_GIDS.

Interface Adapter Address is mapped to IP address. In IPoIB, each PKEY/GID can be assigned an IP
address and each IP address can have multiple aliases IP address. So each can have multiple IP address.

 3-6

IBA Software Architecture
uDAPL

High Level Design

This multiple L3 address for IA poses a problem in identifying the connection request originated from
which IA address. It is the responsibility of the consumer to exchange SourceIP address in
dat_ep_connect() private data. Exact format & location of this information in the private data is
application dependent and uDAPL will not decode it.

3.2.3 Connection Protocol
UDAPL supports active / passive connection method where one side takes active (client) mode and other
takes passive (server mode).

Based on this active/passive method, uDAPL defines two models of connection establishment

1. Client / Server Connection similar to Socket (public service point). PSP will sink all matching
connection request until it is explicitly freed which is similar to close (socket).

2. Client /Server Connection similar to VI. RSP will sink only one incoming connection and reject
any further connection request.

UDAPL connection manager can be split into two

1. Passive Side State Machine

2. Active Side State Machine

Connection callback handlers drive both state machines. These callback handlers are invoked by Access
Layer CM whenever IB CM message arrives or error or during message timeouts.

Following two sections describes each state machine in detail.

 3-7

IBA Software Architecture
uDAPL

High Level Design

3.2.3.1 Passive Side

Connect Pending 1
1.Create EP if needed

2.Generate
3.dat_cr_query

4.Wait for dat_cr_accept

LISTEN
REQ Recvd

/

 REP Sent

Connect Pending 2
1.Wait for RTU arrival

Connected
1. For RSP, issue ib_cm_cancel

2. EP is moved to connected state

IDLE
1.For RSP, ib_cm_cancel is issued

2. EP is moved Idle state

REQ
 Tim

eoutREP Timeout

R
TU

 R
ecvd

Disconnect Pending A
1. Move the QP to Error stateDREQ Arrived

Send DREP

Disconnect Pending B
1. Move the QP to Error statet /

DREQ Sent
DREQ Timeout /

DREP Arriv
ed

PASSIVE SIDE

TimeWait
1. Reset the QP

TimeWait
Expired

CR Arrival Event

dat_cr_accept

da
t_r

sp
_c

rea
te

dat_psp_create

dat_ep_disconnec

Figure 10 Passive Side States

Passive Side state machine can be also called as server side state machine and which can initiated by
server using dat_psp_create () or dat_rsp_create().

1. UDAPL maps dat_psp_create / dat_rsp_create to ib_cm_listen and puts the Service point into
listen state. UDAPL specifies its internal passive side state machine handler as callback handler
to ib_cm_listen_api(). The size of EVD determines the backlog size for PSP . For RSP backlog
size is always 1.

2. On the Arrival of the of the connection request Access Layer will invoke uDAPL callback
handler which will move the service point to “Connection Pending 1” state and post CR arrival
event to EVD. The handle may also decide to signal EVD wait object or CNO wait object or
invoke proxy agent depending on the situation.

3. If uDAPL consumer accepts the connection by invoking dat_cr_accept, uDAPL issue
ib_cm_accept() which generate REP message. Then EP/SP state will be moved “Connect
Pending State” and dat_cr_accept will wait on the EP wait object.

 3-8

IBA Software Architecture
uDAPL

High Level Design

4. When RTU message arrives or Connection Establishment event arrives, Access Layer will invoke
the callback handler again. Callback handler will move the EP to “Connected” State and free the
CR handle. After resource cleanup, dat_cr_accept will wakeup & return.

5. If any DREQ arrives any time, AL will invoke callback handler, which will move EP to
“Disconnect Pending 1” state and move the QP to error state by invoking ib_modify_qp. This will
flush any pending workrequest. EP will be move to “TimeWait” state

6. After sending DREP, EP will be moved to “idle” sate after passing through “TimeWait” state.

7. If Application invokes dat_ep_disconnect(), EP will be moved “Disconnect Pending 2” state and
DREQ message will be sent by invoking ib_cm_dreq()

8. Once DREP message arrives or DREQ message times out, QP will be moved to error state to
flush all the descriptors using ib_modify_qp().

9. EP will be moved to “idle” sate after passing through “TimeWait” state.

3.2.3.2 Active Side

Idle/Disconnected

Connect_Pending_A1

Connect_Pending_A3

Connected
Disconnect_Pending_A1

Disconnect_Pending_A2

REQ Sent

REP Recvd

/DREQ Sent

DREP Arrived or DREP

timed out

DREQ Recvd

D
R

EP
 S

en
t

Inv
ali

d S
ID

REJ R
ec

vd

TimeWait

Ti
m

eO
ut

 E
xp

ire
d

R
TU

 Sent

ACTIVE SIDE
Connect_Pending_A2

R
EQ

 T
im

eo
ut

ep_connect timeout

R
EQ

 S
en

t

dat_ep_create

Connect_Pending_A4
Sleep for 10ms

REQ Sent

ep_connect timeout
User(Server) Rej Recvd

Invalid SID REJ Recvd

dat_ep_connect

dat_ep_disconnect

Figure 11 Active Side States

Active Side state machine can be also called as client side state machine and which can initiated by server
using dat_ep_connect ().

 3-9

IBA Software Architecture
uDAPL

High Level Design

1. UDAPL maps dat_ep_create to ib_create_qp and puts the Endpoint into idle state. UDAPL
specifies its internal active side state machine handler as callback handler to ib_cm_req ().

2. When consumer invokes dat_ep_connect,

a. remote address is converted to GID by invoking IPoIB driver ioctl interface

b. Path record is obtained by invoking access layer using ib_query() by
IB_QUERY_PATH_REC_BY_GIDS.

c. Invoking ib_cm_req sends REQ message . The parameter for this API includes callback
message for all CM messages & errors.

d. EP is moved “Connect Pending A1” state.

e. dat_ep_connect waits on WaitObj

3. If User(Server)REJ message is received, AL will invoke REJ callback which will move the EP
back to “Disconnected” state and signal the WaitObject. Dat_ep_connect will wake up & return
with error.

4. If REP message is received AL will invoke REP callback, which will move the QP to RTR state
and move the EP to “Connect Pending A3” state.

5. After QP is moved to RTS state and RTU message is sent, EP is moved to connected state.

6. “Connect Pending 2” is retry state. UDAPL will attempt to establish connection until timeout
occurs

7. “Connect Pending 4” is also optional retry state. In some implementation it is desirable for
uDAPL to retry connection until server comes online. This should be build time option.

8. If any DREQ arrives any time, AL will invoke callback handler, which will move EP to
“Disconnect Pending 1” state and move the QP to error state by invoking ib_modify_qp. This will
flush any pending workrequest. EP will be move to “TimeWait” state

9. After sending DREP, EP will be moved to “idle” sate after passing through “TimeWait” state.

10. If Application invokes dat_ep_disconnect(), EP will be moved “Disconnect Pending 2” state and
DREQ message will be sent by invoking ib_cm_dreq()

11. Once DREP message arrives or DREQ message times out , QP will be moved to error state to
flush all the descriptors using ib_modify_qp().

12. EP will be moved to “idle” sate after passing through “TimeWait” state.

3.2.3.3 Connection Management Callback Handler
As described in above two sections, callback handler is the prime mover of uDAPL CM. This section
describes the how callback handlers managed & how it is used to change the EP/SP state.

On Passive side

1. REQ callback is specified in ib_cm_listen() parameter.

2. RTU callback is specified in ib_cm_rep() parameter

3. DREQ callback is specified in ib_cm_rep() parameter

On Active side

 3-10

IBA Software Architecture
uDAPL

High Level Design

1. REP callback is specified in ib_cm_req() parameter

2. REJ callback is specified in ib_cm_req() parameter

3. DREQ callback is specified in ib_cm_rtu() parameter

For easy representation , all these six callback handlers are mapped to single callback handler i.e, for
example

void req_cb(ib_cm_req_rec_t *p_cm_req_rec)

{

 udapl_cm_callback(REQ_MSG,(void *)p_cm_req_rec);

}

dat_ep_connect / dat_ep_disconnect / dat_cr_accept / dat_cr_reject API works in tandem with these
callbacks to endpoint from Unconnected state to connected state & vice versa.

For detailed operation of udpl_cm_callback refer to following figure.

 3-11

IBA Software Architecture
uDAPL

High Level Design

udapl_cm_callback

Reason

Msg

3way Handshake Message

REP

REQ

RTU/
Connection
Established

Event

Msg

REJ

DREQ

DREP

Error Message

CM Error ?

DREQ
TimeoutREQ Timeout

REP Timeout

CM Error

If no EP State
Error, Generate
CR Arrival Event

1.Send RTU
2. Mark EP to

connected State.
3.Generate
Connection

Estabilished Event

1. Mark EP to
Connected State

2.Generate
Connection

Estabilished Event

1. Generate REJ
Event

1.Mark EP to
Disconnect

Pending
2.Send DREP
3.Force QP to

Error State
4.Mark EP

disconnected

1.Send DREP
2.Force QP to

Error State
3.Mark EP

disconnected

Set EP to REQ
Timeout State &

Generate
REQ_TO_Event

Set EP to REP
Timeout State &

Generate
REP_TO_Event

Send DREP
Set EP to

Disconnected
State

Complete
udapl_cm_callback

EndPoint /
ServicePoint

Figure 12 CM Callback handler Flow

 3-12

IBA Software Architecture
uDAPL

High Level Design

3.3 Data Transfer & Completion Service
Data transfer operation involves converting DTO into IB work request and posting it to access layer using
ib_post_send() & ib_post_recv() API's.

DTO completion can be reaped either using dat_evd_dequeue or using dat_evd_wait. An application
chooses to use CNO to wait on multiple EVDs. Application may also choose to use OS proxy agent to
trigger any CNO .

3.3.1 Data Transfer Service
Data transfer operation involves following operation

1. Check and make sure EP is right state.

a. dat_ep_post_send() can be successful only EP is in connected state

b. dat_ep_post_recv() can be successful even EP is in un connected state

2. Convert DTO into workrequest of format ib_recv_wr_t / ib_send_wr_t .

3. Acquire directional spinlock i.e TxSpinlock for post_send dto & RxSpinlock for post_recv dto.

4. Invoke ib_post_send or ib_post_recv depending on dto

5. Release any resource & spinlocks

RMR bind operation also requires to be posted using ib_post_send.

3.3.2 Completion Service
Figure below describes how various events such as connection events, DTO events and errors etc are
funneled.

EVD funnels following completions/events

1. out_dto completions

2. in_dto completions

3. rmr_bind completions

4. connection request events

5. async errors

CNO funnels all EVD completions to which it is associated. However CNO reaping API dat_cno_wait
only return the EVD for which completion is available but not actual event.

OS proxy funnels all CNOs to which it is associated. OS proxy agent is not DAT resource so it can funnel
completions from multiple CNOs from multiple providers.

Below is the pictorial representation of how completions are funneled through.

 3-13

IBA Software Architecture
uDAPL

High Level Design

Local End
Point

o
n
s
u
m
e
r

o
t
I
f
I
c
a
t
I
o
n

b
j
e
c
t

E
N
T

I
S
P
A
T
C
H
E
R

out_dto
in_dto

mr_bind
connect

cr

async_error

Local End
Point

out_dto
in_dto

mr_bind
connect

cr

async_error

S0

Sn

..

E0

E
N
T

I
S
P
A
T
C
H
E
R

out_dto
in_dto

mr_bind
connect

cr

async_error

out_dto
in_dto

mr_bind
connect

cr

async_error

S0

Sn

..

E0

S

r
o
x
y

g
e
n
t

O
P
A

C
N
O

E
V
D

E
V
D

Sources

Source

C
N
O

E
V
D
E
V
D

E
V
D
E
V
D

C
N
O

Service
Point

Local End
Point

Service
Point

IA

IA

Local End
Point

Service
Point

IA

Service
Point

IA

Sources

Sources

Sources

Sources

Sources

Sources

Sources

Sources
Sources

Sources

C

N

O

E
V

D

E
V

D

O

P

A

Figure 13 Completion Flow

 3-14

IBA Software Architecture
uDAPL

High Level Design

Work request/DTO completion callback plays very vital in reaping the result in low latency manner &
also provides scalability to the low latency reaping.

DTO Callback handler is registered with IB Access layer while creating Completion Queue. If Event
Dispatcher is created with flag DAT_EVD_DTO_FLAG, Completion Queue is created(using
ib_create_cq() API) and associated with EVD.

This callback is invoked by access layer if any new completion is posted to CQ and if CQ is armed. CQ
can be armed using ib_rearm_cq(). Once Handler is invoked ,

1. handler extracts the EVD information using contect

2. If EVD is not associated with CNO and if outstanding completion has reached threshold and if
any thread is waiting on EVD, EVD wait object is signaled.

3. If EVD is associated with CNO and CNO is not associated with OS proxy agent and if any thread
is waiting on the CNO, CNO wait object is signaled

4. If EVD is associated with CNO and CNO is associated with OS proxy agent, OS proxy agent is
invoked and OSPA is marked busy.

Flow chart given below describes detailed operation of DTO callback.

DTO callback
invoked / Post

Software Event

Is EVD is
assocated with

CNO?

Is CNO is
associated with

OS Proxy
Agent?

Signal the EVD WaitObj if
any one waiting on it

Signal the CNO WaitObj if
any one waiting on it

Invoke the Proxy Agent
Yes

No

Complete the DTO
Callback

Yes

Is Threshold is
reached

Yes

No

EVDIncrement
nmore++

No

Figure 14 DTO Callback Handler Flow

 3-15

IBA Software Architecture
uDAPL

High Level Design

This uDAPL is implimented over industry standard Access layer which confirms to the IB verbs
specification. Verbs specification doesnot provide API to probe how many completions are pending
without actualy dequeing them from the completion queue. So threshold in dat_evd_wait() may require
unnecessary caching of the completion. The best recommended way of doing is define
MAX_THRESHOLD as one and avoid caching the DTO completions.

Following flow chart also defines how dat_evd_wait can be implemented.

dat_evd_wait

Is th is EVD is
in Exclusive

m ode
Retun Invalid state EVD

Pending Event
== Threshold

DTO Callback Tim er
callback

 Threshold > 0

Pull the com pletion
from IB CQ using

AL & store it in
Calle ’s buff.

Retun Success

Event buffer
specified in

dat_event_wait

1.clear Exclusive
m ode

2. exit evd_wait

Pending Event >= Threshold

Pending Event
==

Threshold

1.Set Exclusive
m ode

2. S tart the tim er
2.W ait for DTO

Callback signal or
EVD Tim er Expire

Pending Event
==

Threshold
Tim er Expired

W ake up from sleep

Return tim eout

T im er expired &
Polling Event != Threshold

DAT_EVD_W AIT flow

Figure 15 EVD Wait flow

3.4 API Mapping – Summary
This table summarizes the uDAPL API mapping to IB access layer APIs.

 3-16

IBA Software Architecture
uDAPL

High Level Design

API TYPE UDAPL IB Access Layer Requirement

Interface Adapter DAT_IA_Open ib_open_ca

 DAT_IA_Close ib_close_ca

 DAT_IA_Query ib_query_ca

 DAT_Set_Consumer_Context

 DAT_Get_Consumer_Context

Event Management DAT_EVD_Create ib_create_cq

 DAT_EVD_Free ib_destroy_cq

 DAT_EVD_Query ib_query_cq

 DAT_EVD_Modify_CNO ib_modify_cq

 DAT_EVD_Enable ib_rearm_cq

 DAT_EVD_Disable

 DAT_EVD_Resize ib_modify_cq

 DAT_EVD_Wait

 DAT_EVD_Dequeue ib_poll_cq

 DAT_EVD_Post_SE

Consumer Notification

Object

DAT_CNO_Create

 DAT_CNO_Free

 DAT_CNO_Wait

 DAT_CNO_Modify_Agent

 DAT_CNO_Query

Connection
Management

DAT_PSP_Create ib_cm_listen

 DAT_PSP_Free ib_cm_cancel

 DAT_PSP_Query

 DAT_RSP_Create ib_cm_listen

 DAT_RSP_Free ib_cm_cancel

 DAT_RSP_Query

 DAT_CR_Query

 DAT_CR_Accept ib_cm_rep / ib_cm_rtu

 3-17

IBA Software Architecture
uDAPL

High Level Design

 DAT_CR_Reject ib_cm_rej

 DAT_CR_Handoff

End Point DAT_EP_Create ib_create_qp

 DAT_EP_Free ib_destroy_qp

 DAT_EP_Get_Status ib_query_qp

 DAT_EP_Query ib_query_qp

 DAT_EP_Modify ib_modify_qp

 DAT_EP_Connect ib_cm_req

 DAT_EP_Dup_Conn

 DAT_EP_Disconnect ib_cm_dreq/ib_cm_drep

 DAT_EP_Post_Send ib_post_send

 DAT_EP_Post_Recv ib_post_recv

 DAT_EP_Post_RDMA_Read ib_post_send

 DAT_EP_Post_RDMA_Write ib_post_send

Memory Management DAT_PZ_Create ib_alloc_pd

 DAT_PZ_Free ib_dealloc_pd

 DAT_PZ_Query

 DAT_LMR_Create ib_reg_mem / ib_reg_shmid

 DAT_LMR_Free

 DAT_LMR_Query

 DAT_LMR_Modify

 DAT_RMR_Create ib_create_mw

 DAT_RMR_Free ib_destroy_mw

 DAT_RMR_Query ib_query_mw

 DAT_RMR_Bind ib_bind_mw

 3-18

IBA Software Architecture
uDAPL

High Level Design

3.5 Debug Services
TBD

 3-19

IBA Software Architecture
uDAPL

High Level Design

4. Data Structures and APIs
All the uDAPL resources are doubly linked to Interface Adapter for easy maintenance. The following
diagram provides a schematic of the structures used in the uDAPL library.

udapl_context

ia_context

evd_context evd_context

ep_context

pz_context

lmr_context

rmr_context rmr_context rmr_context

ep_context

se_context

ia_context

ep_context

sp_context

cr_context cr_context

sp_context sp_context

Figure 16 Structure/Context Relationship

To improve the performance, uDAPL can allocate these resources from registered memory to avoid
swapping in & out of physical memory. The actual performance gain can gauged only after experimenting
with resource allocation using registered memory.

Following is the udapl_internal.h content

#ifndef _UDAPL_INTERNAL_

 4-1

IBA Software Architecture
uDAPL

High Level Design

#define _UDAPL_INTERNAL_

#include dat.h

#include ib_al.h

#include ib_types.h

typedef enum _dapl_handle_type

{

 IA_HANDLE_TYPE ='_IA_',

 EVD_HANDLE_TYPE ='_ED_',

 EP_HANDLE_TYPE ='_EP_',

 CR_HANDLE_TYPE ='_CR_',

 PZ_HANDLE_TYPE ='_PZ_',

 CNO_HANDLE_TYPE ='_CN_',

 LMR_HANDLE_TYPE ='_LR_',

 RMR_HANDLE_TYPE ='_RR_',

 PSP_HANDLE_TYPE ='_PS_',

 RSP_HANDLE_TYPE ='_RS_'

}dapl_handle_type;

typedef enum _evd_state

{

 DAT_EVD_INIT,

 DAT_EVD_ENABLED,

 DAT_EVD_EXCLUSIVE, //cannot be polled or waited by any
other thread

 DAT_EVD_PAUSED,

 DAT_EVD_DISABLED,

 DAT_EVD_ERROR

}evd_state;

typedef enum _ep_state

{

 4-2

IBA Software Architecture
uDAPL

High Level Design

 //For both Active & Passive

 DAT_EP_INIT,

 //Active side

 DAT_EP_LISTEN, //???

 DAT_EP_CONNECT_PENDING_REQ_RECVD,

 DAT_EP_CONNECT_PENDING_REP_SENT,

 DAT_EP_CONNECT_PENDING_REP_TO, //???

 DAT_EP_CONNECT_PENDING_RTU_RECVD,

 //Passive side

 DAT_EP_CONNECT_PENDING_REQ_SENT,

 DAT_EP_CONNECT_PENDING_REQ_TO, //REQ TimeOut

 DAT_EP_CONNECT_PENDING_REP_RECVD,

 DAT_EP_CONNECTED,

 //For both Active & Passive

 DAT_EP_DISCONNECT_DREQ_SENT,

 DAT_EP_DISCONNECT_DREQ_RECVD,

 DAT_EP_DISCONNECT_TIMEWAIT,

 DAT_EP_DISCONNECTED,

 DAT_EP_TX_ERR,

 DAT_EP_RX_ERR

}ep_state;

typedef enum _cr_state

{

 DAT_CR_ACTIVE,

 DAT_CR_TIMEOUT

}cr_state;

typedef enum _cno_state

{

 4-3

IBA Software Architecture
uDAPL

High Level Design

 DAT_CNO_ENABLED,

 DAT_CNO_DISABLED

}cno_state;

typedef enum _proxy_agent_state

{

 PROXY_AGENT_IDLE,

 PROXY_AGENT_RUNNING

}proxy_agent_state;

typedef struct _udat_ia

{

 //ia maintenance variables

 cl_list_item_t next;

 dapl_handle_type type;

 cl_spinlock_t lock;

 //AL association

 ib_ca_handle_t hca;

 ib_guid_t guid;

 ib_pfn_err_cb_t err_cb;

 void * hca_context;

 //uDAPL association

 DAT_NAME_PTR ia_name;

 DAT_CONTEXT context;

 DAT_QLEN async_evd_qlen;

 udat_evd async_evd_handle;

 //ia resource list

 cl_list_item_t eplist;

 cl_list_item_t connlist;

 cl_list_item_t evdlist;

 4-4

IBA Software Architecture
uDAPL

High Level Design

 cl_list_item_t splist;

 //ia resource max

 uint32_t max_ep;

 uint32_t max_conn;

 uint32_t max_evd;

}udat_ia;

typedef struct _udat_evd

{

 //ia maintenance variables

 cl_list_item_t next;

 dapl_handle_type type;

 cl_spinlock_t lock;

 evd_state state;

 udat_ia ia;

 //AL/CL association

 ib_cq_handle_t cq;

 ib_pfn_err_cb_t cq_err_cb;

 void* const cq_context;

 cl_event_t wait_obj;

 ib_pfn_comp_cb_t cq_cb;

 cl_timer_t timer;

 cl_pfn_timer_callback_t timer_cb;

 uint32_t evd_wait_threshold;

 uint32_t timer_cb_threshold;

 uint32_t event_nmore;

 //software evd

 struct{

 4-5

IBA Software Architecture
uDAPL

High Level Design

 void* evd_buff;

 void* head;

 void* tail;

 void* size;

 }sw_evd;

 //uDAPL association

 DAT_COUNT evd_len;

 udat_cno cno_handle;

 udat_evd evd_flags;

 cl_list_item_t resource_association;
 //resources associated with this evd

 DAT_BOOLEAN localy_created;

 DAT_CONTEXT context;

}udat_evd;

typedef struct _udat_cno

{

 //ia maintenance variables

 cl_list_item_t next;

 dapl_handle_type type;

 cl_spinlock_t lock;

 cno_state state;

 udat_ia ia;

 //AL association

 cl_wait_obj_handle_t wait_obj;

 cl_timer_t timer;

 cl_pfn_timer_callback_t timer_cb;

 //uDAPL association

 udat_ia ia_handle;

 DAT_OS_PROXY_AGENT agent;

 4-6

IBA Software Architecture
uDAPL

High Level Design

 cl_list_item_t evd_list;

 DAT_CONTEXT context;

 proxy_agent_state pa_state;

}udat_cno;

typedef struct _udat_ep

{

 //ia maintenance variables

 cl_list_item_t next;

 dapl_handle_type type;

 cl_spinlock_t lock;

 ep_state state;

 udat_ia ia;

 sockaddr_in6 local;

 sockaddr_in6 remote;

 //AL association

 ib_qp_handle_t qp;

 ib_pfn_err_cb_t qp_err_cb;

 void* const qp_context;

 cl_spinlock_t tx_lock;

 cl_spinlock_t rx_lock;

 //uDAPL association

 DAT_PZ_HANDLE pz_handle;

 udat_evd recv_evd_handle;

 udat_evd request_evd_handle;

 udat_evd connect_evd_handle;

 udat_evd rmr_bind_evd_handle;

 DAT_EP_ATTRIBS ep_attribs;

 DAT_CONTEXT context;

 4-7

IBA Software Architecture
uDAPL

High Level Design

 ib_cm_req req;

 ib_cm_rep rep;

 ib_cm_rtu req;

 ib_cm_rej req;

 //

 uint32_t max_tx_pending;

 uint32_t max_rx_pending;

 uint32_t tx_pending;

 uint32_t rx_pending;

}udat_ep;

typedef struct _udat_sp

{

 //ia maintenance variables

 cl_list_item_t next;

 dapl_handle_type type; //indicates PSP / RSP

 cl_spinlock_t lock;

 ep_state state;

 //uDAPL association

 udat_ia ia_handle;

 udat_evd connect_evd_handle; //size of
evd is size of backlog

 DAT_PSP_FLAGS flags;

 DAT_CON_QUAL ConnQual;

 udat_ep *ep;

}udat_sp;

 4-8

IBA Software Architecture
uDAPL

High Level Design

typedef struct _udat_cr

{

 cl_list_item_t next;

 dapl_handle_type type;

 cl_spinlock_t lock;

 cr_state state;

 udat_ia ia;

 udat_sp *sp;

 ib_cm_req req;

}udat_cr

typedef struct _udat_pz

{

 //ia maintenance variables

 cl_list_item_t next;

 dapl_handle_type type;

 cl_spinlock_t lock;

 pz_state state;

 udat_ia ia;

 //AL association

 ib_pd_handle_t pd;

 void* const pd_context;

 //uDAPL association

 udat_ia ia_handle;

 cl_list_item_t resource_association; //resources
associated with this pz

 DAT_CONTEXT context;

}udat_pz;

 4-9

IBA Software Architecture
uDAPL

High Level Design

typedef struct _udat_lmr

{

 //ia maintenance variables

 cl_list_item_t next;

 dapl_handle_type type;

 cl_spinlock_t lock;

 udat_ia ia;

 //AL association

 ib_mr_handle_t ph_mr;

 uint32_t* p_lkey;

 uint32_t* r_lkey;

 ib_mr_create_t mr;

 //uDAPL association

 DAT_MEM_TYPE mem_type;

 DAT_REGION_DESCRIPTION region_description;

 DAT_VLEN length;

 DAT_PZ_HANDLE pz;

 DAT_MEM_PRIV_FLAGS mem_privilages;

 DAT_LMR_CONTEXT lmr_context;

 DAT_VLEN registered_size;

 DAT_VADDR registered_address;

 DAT_CONTEXT context;

}udat_lmr;

typedef struct _udat_rmr

{

 //ia maintenance variables

 cl_list_item_t next;

 dapl_handle_type type;

 cl_spinlock_t lock;

 4-10

IBA Software Architecture
uDAPL

High Level Design

 udat_ia ia;

 //AL association

 ib_mw_handle_t ph_mw

 uint32_t* p_lkey;

 uint32_t* r_lkey;

 //uDAPL association

 DAT_PZ_HANDLE pz;

 DAT_CONTEXT context;

}udat_rmr;

#endif _UDAPL_INTERNAL_

4.1.1 RAS Support
TBD

 4-11

IBA Software Architecture
uDAPL

High Level Design

 4-12

IBA Software Architecture
uDAPL

High Level Design

5. Installing, Configuring, and
Uninstalling

5.1 Installing
TBD

5.2 Configuring
TBD

5.3 Uninstalling
TBD

 5-1

	Revision History and Disclaimers
	Abstract
	Introduction
	Purpose and Scope
	Audience
	Acronyms and Terms
	References
	Conventions
	Before You Begin

	Design Overview
	Requirement for uDAPL
	System Structural Overview

	Design Details
	Resource Manager
	Interface Adapter
	Event Dispatcher
	Consumer Notification Object
	EndPoint
	Local Memory Region & Remote Memory Region

	CM Service
	Connection Qualifier
	Address Translation
	Connection Protocol
	Passive Side
	Active Side
	Connection Management Callback Handler

	Data Transfer & Completion Service
	Data Transfer Service
	Completion Service

	API Mapping – Summary
	Debug Services

	Data Structures and APIs
	
	RAS Support

	Installing, Configuring, and Uninstalling
	Installing
	Configuring
	Uninstalling

