

IBA Software Architecture
IP over IB Driver

High Level Design

Draft 2

July 2002

Revision History and Disclaimers

Rev. Date Notes

Draft 1 March 2002 Internal review.

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel
disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this
specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

This Specification as well as the software described in it is furnis hed under license and may only be used or copied in
accordance with the terms of the license. The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel
Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or
any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the express written consent of Intel Corporation.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002 Intel Corporation.

Abstract
The IP over IB (IPoIB) link driver provides standardized Internet Protocol encapsulation over IBA fabrics
as defined by the IETF IPoIB working group. Implemented as a standard Linux link driver, it interfaces
to the lower edge of the Linux network stack through the net_device abstraction. The IPoIB driver gains
access the HCA and subnet management services through the Abstraction Layer. All IPoIB data transfers
use the unreliable datagram service. In addition to unicast transfers, IPoIB also requires the use of the
IBA UD multicast service.

The primary responsibilities of the IPoIB driver are performing address resolution to map IPv4 and IPv6
addresses to UD address vectors and the management of multicast membership. The following sections
provide details on the features and goals of the design as well as the external interfaces used and exported
by the IPoIB driver.

Contents
1. Design Overview.. 1-1
1.1 Data Flow.. 1-1
1.2 IP over IB Endpoint Identification .. 1-2
1.3 Address Resolution.. 1-2
1.4 IP over IB Link Boundary .. 1-3
2. Design Details .. 2-1
2.1 Linux Network Device Interfaces ... 2-1

2.1.1 net_device structure.. 2-1
2.1.2 Inbound Data Flow.. 2-3
2.1.3 Outbound Data Flow ... 2-4
2.1.4 Shadow ARP and Neighbor Discovery ... 2-4

2.2 HCA Access Layer Interfaces ... 2-5
2.2.1 Inbound Data Flow.. 2-5
2.2.2 Outbound Data Flow ... 2-5

2.3 Locking and Threading Model... 2-6
2.4 Buffer Strategy .. 2-6
2.5 Driver Initialization ... 2-6
2.6 Network Interface Initialization .. 2-6
3. Data Structures and APIs.. 3-1
3.1 Structure Relationships .. 3-1
3.2 APIs.. 3-2
3.3 struct ipoib_path_info... 3-2

3.3.1 Kernel-Mode API .. 3-2
3.3.2 User-Mode API... 3-3

4. Installing, Configuring, and Uninstalling .. 4-1
4.1 Installing ... 4-1
4.2 Configuring.. 4-1
4.3 Uninstalling ... 4-1

Figures
Figure 2-1. Linux Network Architecture .. 1-1
Figure 2-2. Virtual Hardware Address Format ... 1-2
Figure 2-3. QP to IPoIB Link/Subnet Association .. 1-4

IBA Software Architecture
IP over IB Driver

High Level Design

 1-1

1. Design Overview
The IPoIB driver integrates into the Linux network stack as a layer-2 network driver. The network driver
is responsible for constructing/deconstructing its own headers, transmitting frames, as well as receiving
frames and routing them to the appropriate layer-2 network driver user. Using this model, the IPoIB
driver presents a standard Linux driver interface to the bottom of the network stack and interfaces to the
Channel Adapter (CA) Access Layer for IBA services.

Figure 1-1 illustrates the IPoIB driver’s relationship in a complete Linux network stack.

Other Link Drives

Ethernet, ATM, Serial,

Etc.

 Address Family and Socket Type Switch

TCPv4 UDPv4 ICMP IGMP

IPv4 IPv6
ND

IPoIB Driver

IBA Access Layer

Network Application

glibc sockets
User Space

Kernel Space

Inbound Protocol Switch

IPv6

TCPv6 UDPv6

Other Link Drives
Ethernet, ATM, Serial,

Etc.

IPv4
ARP

IPoIB Link

Figure 1-1. Linux Network Architecture

1.1 Data Flow
Outside of address resolution, the IPoIB driver provides a thin veneer between the IP protocol layers and
the IBA Access Layer. The current version of the IPoIB draft defines a four-byte encapsulation header
that contains the protocol type to identify the IPoIB user for incoming and outgoing frames. Therefore,
normal data flow has very little IPoIB protocol-processing overhead.

For outbound data, the IPoIB driver must associate the virtual hardware address constructed through the
Address Resolution Protocol (ARP) with the appropriate Unreliable Datagram (UD) address vector
handle. In addition, it must either register the sk_buff data buffer or copy data buffer contents to
registered memory before posting to the appropriate Queue Pair (QP).

IBA Software Architecture
IP over IB

High Level Design

 1-2

 NOTE
The decision to register sk_buffs or copy data to/from them will be based on performance trade -
offs. Since an IPoIB frame cannot exceed the UD MTU size (2K for Profile B), it may turn out that
copying may always be faster than registering/un-registering memory.

For inbound data, the IPoIB driver must construct an sk_buff that contains the received data and has
the protocol field set appropriately. The protocol type field in the encapsulation header is used to set the
protocol field. The inbound protocol switch of the Linux network stack uses the protocol field to route
the sk_buff to the appropriate protocol layer.

Unlike outbound data, inbound data will always be copied form pre-registered memory into an allocated
sk_buff. In addition to the possible performance considerations mentioned above, there is currently no
deterministic way for the IPoIB driver to know when the sk_buff has been retired.

1.2 IP over IB Endpoint Identification
As discussed above, the IP over IB protocol defines a virtual hardware address to convey endpoints
within the fabric. This virtual hardware address is a 20 byte value composed of the port GID +
UD QPN + a reserved 8 bits for future capabilities flags. Figure 1-2 diagrams the structure of this address
format.

Rsvd
(8-0)

Byte
0

Byte
19

GID (127-0)QPN (23-0)

Figure 1-2. Virtual Hardware Address Format

Because an IPoIB device port (defined by the GID) may belong to more than one subnet (defined by the
P_Key) or support more than one interface through a different QPN, the GID, QPN, and P_Key are all
required to make an IPoIB endpoint unique. Although the P_Key is not a formal part of the IPoIB
hardware address format, it is implied by the subnet associated with the network interface.

1.3 Address Resolution
Physical link addressing is unique to each type of interconnect (i.e. Ethernet, ATM, FDDI, etc.).
Therefore, the IP protocol suite defines a physical address resolution process that is responsible for
mapping IP addresses to physical address. For IPv4, this mapping is performed through the Address
Resolution Protocol (ARP). The IPv6 protocol performs this mapping through a Neighbor Discovery
(ND) protocol using ICMPv6. All of these resolution protocols require broadcast and multicast services.
For IBA, this means interacting with the fabric Subnet Manager (SM) to create, join, leave, and delete
multicast groups.

Due to the way IBA routes packets through the network, it is difficult for one node to tell another the
complete address vector required for end-to-end communication. For this reason, the IPoIB draft defines
a virtual link address detailed in Section 1.2. The sender is responsible for contacting the SM for
complete addressing information to any particular end node based on the source and destination port GID.
Therefore, full address resolution requires an additional step not found in other links.

IBA Software Architecture
IP over IB Driver

High Level Design

 1-3

The first step is the broadcast request followed by a unicast reply to exchange GID/QPN information.
These steps are part of the standard ARP protocol. The next step is to contact the SM to obtain a
PathRecord to the destination node. The extra step means that the ARP and ND implementation of the
Linux network stack cannot be used unmodified. Although there is a relatively high overhead to this
process, address caching employed by the Linux network stack and the IPoIB driver mitigates how often
this process is used.

A further complication is the fixed and limited storage for a device hardware address in Linux networking
structures. The standard Linux kernel defines MAX_ADDR_LEN to be 8 providing storage for an address
up to 8 bytes long. The IPoIB virtual hardware address is 20 bytes. There are three ways of dealing with
this situation:

1. Increase MAX_ADDR_LEN to be >= 20.

2. Map the GID+QPN virtual address to a new representation that fits within MAX_ADDR_LEN.

3. Change the Linux network architecture to support arbitrary length network hardware addresses.

Option 1 is the cleanest approach. This would allow the standard Linux ARP and ND modules to deal
with IPoIB virtual address and produce IPoIB compliant ARP and ND frames without intervention from
the IPoIB driver. The down side is that MAX_ADDR_LEN is a fundamental define used throughout the
network stack. It will require a recompile of the Linux kernel and all associated network drivers. Third
party software vendors with dependencies on any of the kernel structures using MAX_ADDR_LEN could
not supply compatible binaries.

Option 2 could be implemented without affecting the Linux kernel or compatibility with third party
binary vendors. The down side is that the IPoIB driver would need to rewrite/reformat inbound and
outbound ARP and IPv6 ICMP ND frames to translate from the compressed address format we advertise
to the kernel and the true virtual address representation required by IPoIB.

Option 3 is listed as the architecturally “correct” thing to do. However, this is a fundamental change that
would affect many lines of code. Given the level of effort, both in development and lobbying, this
approach will not be perused.

Given all of the above, the IPoIB design will take option 1 and assume MAX_ADDR_LEN is adjusted to
accommodate the 20-byte IPoIB hardware address.

1.4 IP over IB Link Boundary
Both IPv4 ARP and IPv6 Neighbor Discovery protocols depend on the ability to broadcast frames to all
nodes attached to a common link. Although the IPoIB draft could have defined the IPoIB link as an IBA
subnet, they chose instead to allow an IPoIB link to span multiple IBA subnets. Therefore, IPoIB must
specify a mechanism to establish IPoIB link boundaries. An IPoIB link boundary is defined as all nodes
that are a member of the broadcast/all-nodes multicast group for a particular IBA partition. This means
that a single CA port can be home to multiple IPoIB links. From an IP perspective, each link represents
an IP subnet so a single CA port can be a member of multiple IP subnets.

To support his abstraction, the IPoIB driver will create a network device instance (represented by a Linux
net_device structure) for each IPoIB link/subnet. Each IPoIB network device will associate one UD
QP to the IPoIB link. Figure 1-3 illustrates the relationships between the Linux notion of a device, IPoIB
QP, CA port, and IP subnet/IPoIB link.

IBA Software Architecture
IP over IB

High Level Design

 1-4

Partition X
10.8.0.0

Partition W
10.7.0.0

IPoIB Driver

net_device
ib1

UD
QP

(10.7)

HCA
Port

A
Partition Z

10.5.0.0
Partition Y

10.2.0.0

HCA
Port

B

UD
QP

(10.8)

UD
QP

(10.2)

UD
QP

(10.5)

IP Layer

net_device
ib2

net_device
ib3

net_device
ib4

Figure 1-3. QP to IPoIB Link/Subnet Association

IBA Software Architecture
IP over IB Driver

High Level Design

 2-1

2. Design Details
As a component in a layered network architecture, the IPoIB driver has a service-user interface as well as
a service-provider interface. The service-user interface it defined by the net_device and sk_buff
structures of the Linux kernel. The service-provider for the IPoIB driver is the IBA Access Layer. The
primary interface to the Access Layer is through a well-defined API that is directly callable from within
the IPoIB driver. The following sections describe dataflow as it relates to these service interfaces.

2.1 Linux Network Device Interfaces
The two primary Linux network drives interfaces are net_device structure and the sk_buff
structure. The net_device structure defines the network interface including all supported service
routines. The sk_buff structure defines the attributes of a link level frame.

2.1.1 net_device structure
The net_device structure is defined in include/linux/netdevice.h. The IPoIB driver is responsible for
creating and initializing this structure for each device associated with a network segment under its control.
The initialized structure is registered through the Linux kernel call register_netdev(). The IPoIB
driver initializes the following fields:

name This fixed length array provides the humane-readable name for the device.
The IPoIB driver will assign a name to each device that makes it easy for the
administrator to associate the name with the physical CA and port. The
naming scheme is as follows:

 ibX_Y_Z

where X is the hex value of the CA, Y is the hex value of the port, and Z is
the hex partition key value for the network segment. So the following device
name is for CA 0, port 1, partition 20:

 ib0_1_14

type This field will be set to the constant ARPHRD_IPOIB defined in
include/linux/if_ipoib.h. This value (32) has been assigned to the IPoIB
working group by IANA.

flags This field will be initialized with the flag combination
IFF_BROADCAST|IFF_MULTICAST

hard_header_len This field will be set to the constant IPOIB_HLEN defined in
include/linux/if_ipoib.h. Although the IPoIB draft only defines a four-byte
encapsulation header, this value will be set to 44 to provide room for a
pseudo header that contains the source and destination IPoIB virtual
hardware addresses.

mtu This field indicates the MTU of the underlying link. The MTU value is
determined when the device joins the all-nodes multicast group. However, it
cannot exceed the unreliable datagram MTU of the underlying link.

IBA Software Architecture
IP over IB

High Level Design

 2-2

watchdog_timeo This field indicates the minimum time that should pass before transmit
timeout is assumed. At that time, the Linux networking infrastructure will
call the routine specified in the tx_timeout field. This value will be set
from a drive static variable that can be set when the IPoIB module is loaded.
The default is the constant DEFAULT_TX_TIMEOUT defined in ~/ipoib.h.

addr_len This field indicates the length of the hardware address for the device. This
value cannot exceed the Linux kernel value MAX_ADDR_LEN. The IPoIB
driver will use the constant IPOIB_ALEN defined in
include/linux/if_ipoib.h.

tx_queue_len This field specifies the maximum number of frames that can be queued on
the device’s transmission queue. The IPoIB driver will set this value from a
driver static variable that can be set when the IPoIB module is loaded. The
default is the constant DEFAULT_SQ_DEPTH defined in ~/ipoib.h.

dev_addr This fixed length array holds the hardware address for the device. The
maximum length is set by the Linux kernel constant MAX_ADDR_LEN.

broadcast This fixed length array of MAX_ADDR_LEN holds the broadcast/all-nodes
address for the device. The array will always hold the pseudo broadcast
address of all ones equal to the number of bytes specified in addr_len and
will always be mapped by the IPoIB driver to the all-nodes multicast address
for this link.

private This void pointer is used to reference device driver-private data. The IPoIB
driver will point this to an ipoib_context_t structure.

The following net_device entries are the supported IPoIB service entry points. Unless otherwise
stated, they will be initialized with the function name identical to the field pre-pended with ipoib_

init From a network device perspective, this entry point is used to initialize the
associated net_device structure and to determine if the device is available for
use. On return from the initialization function, the net_device structure
is completely initialized. This is the only field that must be initialized before
calling register_netdev().

open This function is called when the network interface is opened (i.e. ifconfig
up). On return from the open function, the network device should be
completely initialized and ready for operation. It will also increment the
module usage count for loadable device drivers.

stop This function is called when the interface has been stopped (i.e. ifconfig
down). Any system resources allocated in open should be released.

hard_start_xmit This function initiates the transmission of a complete protocol frame. If the
IPoIB driver has not resolved the address vector handle for the destination, it
will place the frame in a holding queue until the address handle has been
created.

hard_header This function is responsible for constructing a device specific link header.
The IPoIB driver will create a pseudo header that will be mapped to the
appropriate address vector handle in ipoib_hard_start_xmit().

IBA Software Architecture
IP over IB Driver

High Level Design

 2-3

rebuild_header This function is used to rebuild an existing link header within a sk_buff
structure.

tx_timeout This function will be called when a transmit fails to complete within the time
specified in watchdog_timeo.

get_status This function returns status information in a net_device_status
structure. The IPoIB driver maintains an instance of the structure in the
ipoib_context_t structure associated with each device.

set_config This interface method is for link drivers that use I/O and DMA resources.
This is not applicable for the IPoIB driver so this field will be set to NULL.

do_ioctl This function provides support for device-specific ioctl commands. An
example would be mapping an IPoIB ARP pseudo hardware address into a
complete address vector.

set_multicast_list This function is called when the multicast list for the device changes and
when the flags associated with address filtering are changed. The IPoIB
driver uses this as the signaling mechanism to join or leave an IPoIB
multicast group.

set_mac_address This function provides a method for changing the MAC address of a network
device. Since this is not applicable to the IPoIB driver, this entry will be set
to NULL.

change_mtu This function provides a method for changing the MTU of a network device.
Since this is not applicable to the IPoIB driver, this entry will be set to NULL.

header_cache This function supports link header caching by initializing a hh_cache
structure entry from the results of an ARP reply.

header_cache_update This function provides a method for updating an hh_cache structure
entry when addressing information changes.

hard_header_parse This function copies the source hardware address from a sk_buff.

2.1.2 Inbound Data Flow
The IPoIB driver is notified of inbound network frames through a completion queue callback. Both send
and receive callback funnel through a single completion queue serviced by ipoib_interrupt().
This routine determines if it is a send or receive event. For receive events, ipoib_rx() is called.

2.1.2.1 ipoib_rx ()
This function is responsible for creating an sk_buff containing the received data. (The reader is
referred to section 2.4 for a discussion on buffer management.) As part of creating an sk_buff, this
routine must set the following fields:

dev Set to the net_device for this frame.

protocol Set to the “ethertype” for this frame.

The device is derived from the ipoib_context_t pointer that is provided as Completion Queue (CQ)
callback context. The ethertype is derived from IPoIB encapsulation header.

IBA Software Architecture
IP over IB

High Level Design

 2-4

When the sk_buff has been completely processed by the IPoIB driver, it is posted to the Linux kernel
networking infrastructure by calling Linux kernel function netif_rx(). At this point, the IPoIB driver
is no longer responsible for the sk_buff and its contents.

2.1.3 Outbound Data Flow
When the Linux network stack has selected the appropriate link driver to send a frame out on, it calls
several driver functions to prepare and send it. It calls the ipoib_hard_header() entry point to
allow the driver to create a link header and then ipoib_hard_start_xmit() to send what should be
a well formed frame ready for transmission. When the frame has been sent, the ipoib_interrupt()
callback will be called and the send buffer placed back in the send buffer queue. (The reader is referred
to section 2.4 for a complete discussion on buffer management.)

2.1.3.1 ipoib_hard_header()
This function allows the driver to append a link specific header to the frame. Although the draft IPoIB
protocol only defines the encapsulation header as a four byte protocol type, some reference to the
destination address needs to be associated with the frame at this time because source/destination
addressing information is not presented at the ipoib_hard_start_xmit() interface. For this
reason, the IPoIB driver will create a pseudo header containing the source and destination address passed
to the function.

2.1.3.2 ipoib_hard_start_xmit()
This function is called to place a complete frame on the link. The IPoIB driver will de-reference the
pseudo header it build in ipoib_hard_header() to extract the destination address token. Using the
address token, the appropriate address vector handle is located. It is possible that that all the needed
information to create an address vector handle is not currently available. For example, a PathRecord
lookup may be in progress. When the handle is not available, the sk_buff is queued to a pending
transmit queue associated with the address token. When enough information to create a handle becomes
available, all sk_buff structures waiting on this information will be de-queued and transmitted at that
time by calling ipoib_send(). Refer to Section 2.1.4 for a complete discussion on the shadow
address resolution process. Refer to Section 2.2.2 for a complete discussion on ipoib_send() send
completion processing.

2.1.4 Shadow ARP and Neighbor Discovery
Due to the way IBA frames are addressed, it is not practical to have complete address vector information
returned in ARP and Neighbor Discovery responses. Instead, these responses return the target GID and
QPN. The GID is used in a subsequent PathRecord lookup to return all the information to form an
address vector and create an address vector handle needed to transmit frames over a UD QP. To deal with
this extra PathRecord transaction, the IPoIB driver provides a “shadow” ARP/ND facility.

The shadow facility creates a list of ipoib_addr_token_t structures linked to the
ipoib_context_t structure associated with appropriate net_device structure. New entries are
added whenever the IPoIB driver needs to track hardware address properties of an address not currently in
the list. These properties include the IPoIB hardware address, components of the address vector, and
when address re-mapping is required, the address token. Although an entry will be created any time
address information needs to be retrieved or stored, inbound ARP replies and Neighbor Advertisements
will generally trigger the process.

IBA Software Architecture
IP over IB Driver

High Level Design

 2-5

As with the standard ARP cache, to prevent shadow entries from becoming stale they must be
purged/refreshed from time to time. This could be done through a timer facility or by having the IPoIB
driver look for outbound ARP requests and Neighbor Solicitations. Current thinking is to use the more
deterministic outbound frame integration method. It is a little more straightforward to implement and will
insure coherence with the Linux neighbor cache.

2.1.4.1 Shadow ARP State Machine
In all cases, an IPoIB hardware address is required to create an ipoib_addr_token_t entry. When
the entry is created, it is marked with a PATHRECORD_PENDING state and a PathRecord lookup
request is given to the Access Layer using the GID component of the IPoIB address. When the result of
the PathRecord is successfully returned, all PathRecord information is stored with the entry, an address
vector handle is created through the Access Layer, and the state changed to RESOLVED. If either the
PathRecord lookup or address handle creation was not successful, the entry will be deleted and the error
logged.

Frames that could not be sent because the state of the address token was not RESOVED are queued to the
entry. When the entry transitions from PATHRECORD_PENDING to RESOLVED, all queued frames
will be sent to the fabric at that time. In the event of a PathRecord lookup failure, all pending entries will
be freed.

2.2 HCA Access Layer Interfaces
The IPoIB driver will interface to the HCA using the Access Layer APIs and service routines. This will
insulate the driver from HCA vendor specifics.

2.2.1 Inbound Data Flow

The arrival of inbound data is signaled through the completion queue callback ipoib_interrupt().
This routine will interrogate the work completion elements to determine if send or receive events have
completed.

For receive events, the GRH header is stripped, and ipoib_rx() function is called to construct an
sk_buff and send the received data up through the Linux network stack. Refer to Section 2.1.2.1for a
discussion on the ipoib_rx() function.

2.2.2 Outbound Data Flow

Outbound data is handled by the ipoib_send() function. The routine will determine the fastest
method for transferring the data. The available methods are mapping the supplied buffer to the HCA or
copying into a pre-allocated and registered buffer. At initialization, a pool of transmit buffers will be pre-
allocated and registered for this purpose.

2.2.2.1 Send Completions
When the frame has been sent, the ipoib_interrupt() callback will be called. Depending on
whether the original buffer of the sk_buff was mapped or if it was copied into a pre-allocated buffer, the
send buffer is either placed back in the send buffer pool or unregistered from the HCA. (The reader is
referred to section 2.4 for a discussion on buffer management.)

IBA Software Architecture
IP over IB

High Level Design

 2-6

2.3 Locking and Threading Model
The IPoIB driver does not explicitly employ threading in the design. The transmit path is always run
under the context of the Linux network stack and cannot block. The receive path is run under the context
of the Access Layer callback for completion queue events. Finally, PathRecord lookups are run under the
context of the Access Layer callback for completed SM events.

It is assumed that all thread contexts running in the IPoIB driver cannot be blocked. For this reason, non-
preemptive cl_spinlock_t locks protect all linked lists. Due to the number of lists involved and to
provide scaling in a multiprocessor environment, the IPoIB driver employs reference counting in
conjunction with fine-grained locking. Any list item with a non-zero reference count cannot be deleted.
Inversely, any list item that transitions to a reference count of zero will be removed from its associated list
and deleted.

Due to the non-preemptive nature of spin locks, they will only be taken long enough to adjust reference
counts and/or to add and remove list items.

2.4 Buffer Strategy
The Linux network buffer management strategy transfers ownership of the sk_buff with the buffer. It
is not retained by the entity that initially allocated it. This approach means that the IPoIB driver cannot
recycle permanently registered receive sk_buff buffers. Instead, it must choose between allocating,
registering, posting, and un-registering an sk_buff or using permanently registered memory and
copying received data into an allocated sk_buff. The approach taken will depend on the registration
overhead vs. the overhead of a memory copy.

2.5 Driver Initialization
The IPoIB driver is implemented as a loadable kernel module. It can be loaded through the PnP Manager
facility of the Access Layer or explicitly by an administrator using the insmod(8) command. Runtime
configuration can be done through the common configuration file method or by command line arguments
to insmod(8) using the symbol=value method. Command line arguments will always take precedence
over configuration file entries.

On module entry, the driver will perform the following steps:

1. Open an interface to the Access Layer by calling ib_open_al().

2. Request local CA notifications by calling ib_reg_notify() specifying both CA and port events.
All events will be process by a common callback routine.

At this point, the remaining initialization will be driven by CA and port callback events.

2.6 Network Interface Initialization
The IPoIB driver creates network interfaces dynamically as it becomes aware of IBA partitions that have
been configured as IPoIB subnets. This process is event driven by Access Layer callbacks registered
during driver initialization.

IBA Software Architecture
IP over IB Driver

High Level Design

 2-7

When the notification indicates a CA has been added, a new ipoib_ca_t structure is allocated and
added to the list of existing CAs. Likewise, ipoib_port_t structures are allocated and added to the
list of existing ports associated with a CA when a port-up notification is received.

When the driver receives a P_Key change notification and determines that a P_Key has been added, it
will attempt to initialize a network interface by performing the following steps:

1. Allocate a ipoib_context_t structure to be associated with the interface

2. Create a completion queue for sends and receives by calling ib_create_cq().

3. Create a QP for this potential interface by calling ib_create_qp() and associate it with the
completion queue for the port.

4. Initialize the QP for Unreliable Datagram service by calling ib_init_dgrm_svc().

5. Allocate memory the net_device structure

6. Allocate and register send and receive buffers.

7. Attempt to join the broadcast group by calling ib_join_mcast(). Perform the following steps on
a successful callback:

1. Register the net_device structure with the Linux network infrastructure by calling
register_netdev().

2. Post receive buffers.

At this point, an IPoIB network interface is available for configuration by Linux network initialization
scripts or by the system administrator. The relationship of the IPoIB driver data structures is documented
in Section 3.1.

 NOTE
The method for discovering IPoIB links described above assumes that link broadcast groups exist at
the time a port is assigned an IPoIB link related P_Key. It also assumes that joining an IBA
multicast group is a separate operation from creating one. As of this writing, there are changes
being considered by the IBA that would make joining a non-existent multicast group an implicit
group create. This would render the dynamic link discovery method outlined above inoperable.
Therefore, the implementation will also contain conditional code that will compare newly assigned
P_Keys to a list of configured keys to determine if a multicast join operation should be attempted.

IBA Software Architecture
IP over IB

High Level Design

 2-8

IBA Software Architecture
IP over IB Driver

High Level Design

 3-1

3. Data Structures and APIs
All internal data structures are defined in ~/ipoib.h. All public data structures are defined in
<linux/if_ipoib.h>.

3.1 Structure Relationships
The following diagram provides a schematic of the structures use in the IPoIB driver.

Note: All IPoIB structure lists are
doubly link using the cl_qlist type.
For simplicity, they are illustrated
as single link lists here.

ipoib_ca_t

next

ports

ipoib_ca_t

next

ports

next

ca

contexts

ipoib_port_t

next

port

device

ipoib_context_t

endpoints

priv

net_device

next

port

device

ipoib_context_t

endpoints

pending_tx

ipoib_addr_t

next

pending_tx

ipoib_addr_t

next

sk_buff

next

sk_buff

next

next

ca

contexts

ipoib_port_t

IPoIB
Structures

Linux
Structures

Key

IBA Software Architecture
IP over IB

High Level Design

 3-2

3.2 APIs
The IPoIB driver provides a user mode and kernel mode interface for returning PathRecord information
associated with an IP address. This interface is necessary to implement the Sockets Direct Protocol
(SDP) and Direct Access Provider Library (DAPL) as well as provide administrative diagnostic
information.

3.3 struct ipoib_path_info
Both kernel and user-mode APIs use the ipoib_path_info structure. This structure and
SIOCGIPOIBPATH are defined in <linux/if_ipoib.h>. On input, the sin_family and associated
addr fields for the target of the query must be initialized. All PathRecord information comes directly
from the associated MAD and is in network order along. IP addresses are specified in network order
while the sin_family is specified in host order.

#define SIOCGIPOIBPATH (SIOCDEVPRIVATE + 0)
struct ipoib_path_info {
 sa_family_t sin_family; /* address family */
 union {
 uint8_t v4_addr[4]; /* ipv4 destination address */
 uint8_t v6_addr[16]; /* ipv6 destination address */
 } addr;
 uint8_t dest_gid[16]; /* destination port GID */
 uint8_t source_gid[16]; /* source port GID */
 uint16_t dest_lid; /* destination LID */
 uint16_t source_lid; /* source LID */
 uint32_t flow_lable; /* flow label */
 uint16_t pkey; /* partition key */
 uint16_t service_level; /* service level */
 uint16_t mtu; /* path MTU selector*/
 uint16_t static_rate; /* static rate selector */
 uint16_t packet_lifetime; /* packet lifetime */
 uint8_t hop_limit; /* hop limit */
 uint8_t tclass; /* traffic class */
};

3.3.1 Kernel-Mode API
The IPoIB driver will export the following function call:

int
ipoib_get_path(IN OUT struct ipoib_path_info *req,
 IN void *context,
 IN void (*callback)(IN int status,
 IN void *context,
 IN struct ipoib_path_info*));

Where 0 is returned if the request was satisfied and -EAGAIN is returned if information is not currently
available. If -EAGAIN is returned and the callback argument is non-null, the callback will be invoked
when the outcome of the request is known. The status argument of the callback will be 0 on success and

IBA Software Architecture
IP over IB Driver

High Level Design

 3-3

-ENXIO if a node with the specified address could not be found. The context value of the callback will
be the same as passed to the ipoib_get_path() call. When successfully completed, the
ipoib_path_info structure will be updated with valid information.

3.3.2 User-Mode API
The IPoIB driver will implement the following ioctl:
int
ioctl(sock, SIOCGIPOIBPATH, struct ipoib_path_info *req);

This is a blocking call until the outcome is known. A return value of 0 indicates the path information was
resolved. ENXIO is returned if a node with the specified address could not be found. If the socket is
marked non-blocking and the information is not known at the time of the call, EAGAIN will be returned.

IBA Software Architecture
IP over IB

High Level Design

 3-4

IBA Software Architecture
IP over IB Driver

High Level Design

 4-1

4. Installing, Configuring, and
Uninstalling

4.1 Installing
The IPoIB driver is installed as a standard Linux loadable module. It is can be loaded into the kernel
explicitly using the insmod(8) command or automatically us ing the PnP facility of the Access Layer.

4.2 Configuring
The following configuration variables can be specified on the insmod(8) command line or in the Access
Layer PnP configuration file:

sq_depth Send queue depth

rq_depth Receive queue depth

mcast_timeout Multicast join request timeout in milliseconds

mcast_retry_cnt Multicast join request retries

timeout Transmit timeout in jiffies

debug Set debug message level

4.3 Uninstalling
The IPoIB driver is uninstalled as a standard Linux loadable module using the rmmod(8) command. All
IPoIB network devices will be brought down and all resources will be released.

IB Software Architecture
<SW Component Name>

High Level Design

 4-2

