
HCA Driver DDK i

Software Architecture Specification (SAS)
Revision – Draft 1
Last Print Date: 4/30/2002 - 9:03 AM

InfiniBand Linux Software
HCA Driver Development Kit
Copyright (c) 1996-2002 Intel Corporation. All rights reserved

HCA Driver DDK ii

Abstract

InfiniBand™ architecture defines the interface between the OS and the HCA as the Channel
Interface (CI). The specification is covered in Chapters 10 & 11 of the InfiniBand™ architecture
specification Volume 1. Verb definitions in the specification are only a guiding factor for the
API development effort. It provides a structure and semantics of the kinds of functions and
capabilities that need to be exposed by a HCA vendor.

This specification lays out the foundation and building concepts of the HCA drivers, services it
requires from the InfiniBand™ Access Layer (AL) to provide an efficient transport. There are a
few concepts that are specified more clearly to address implementation issues that the
architecture specification does not address. This specification will also provide different interface
guidelines for vendors to develop their driver and support. It will provide all necessary
information to support direct user mode access to their hardware and bypass kernel traps.

This document should not be viewed as a tutorial to InfiniBand™. The reader is expected to be
aware of terms and acronyms that are InfiniBand™ related. The reader is expected to be familiar
with Chapters 10 & 11 of the InfiniBand™ architecture specification, Volume 1.

HCA Driver DDK iii

 Table of Contents

1. INTRODUCTION 4

2. ARCHITECTURAL SPECIFICATION – HCA SPECIFIC DRIVER 5

2.1 INTRODUCTION 5
2.2 DESIGN NOTES 5
2.3 THEORY OF OPERATION – KERNEL MODE DRIVER 7
DRIVER INITIALIZATION INTERFACES 7
TYPICAL DRIVER USAGE MODEL 9
2.4 USER MODE ARCHITECTURE 13
ALLOCATING CQ MEMORY IN USER MODE 14

Table of Figures

Figure 1-1 Architectural Component Block Diagram _________________________________ 4
Figure 2-1 Loading the HCA driver ___ 8
Figure 2-2 Unloading the HCA driver ___ 9
Figure 2-3 Posting Work Requests ___ 11
Figure 2-4 Completion Processing ___ 12
Figure 2-5 User Mode Support Flow ___ 13

HCA Driver DDK 4

1. Introduction
The InfiniBand™ software architecture high-level block diagram is shown below. The software
architecture is specifically designed to separate services into common services generic to all
HCA vendors and vendor specific functionality to provide their own value add for performance
features necessary to differentiate their product. The design of the API’s and the software
mapping was done very carefully to not just translate the verbs definition to API’s but also to
provide a useful and practical solution that ensures design for scalability and robustness that will
drive InfiniBand™ infrastructure and Linux to enterprise computing levels.

Figure 1-1 Architectural Component Block Diagram

User-mode HCA Driver Interface

User-mode InfiniBand Access Interface

Subnet
Manager

SRP

HCA Driver Interface

User

Kernel
 Kernel

Agent(s)

SocketsVIPL MPI Middleware
(uDAPL, etc.)

Application(s)

User-mode Verbs Provider

InfiniBand User-mode Access Layer

InfiniBand Access interface

Legend
OSV Components

HCA Vendor Components

InfiniBand Kernel-mode Access Layer
User-level

Proxy Agent

HCA HW

HCA Verbs
Provider Driver

SM
A/G

SA

IPoIB Other Target
Drivers

IB
PnP

Mgmt.
Svcs

SM
Query

Resource
Mgmt

Connection
Mgmt

Work Request
Processing

Mgmt.
Svcs

SM
Query

Connection
Mgmt

Work Request
Processing

Middleware
kDAPL, etc.

Subnet
Manager

HCA Driver DDK 5

2. Architectural Specification – HCA Specific Driver

2.1 Introduction
This chapter defines the architecture for the HCA specific, or “verbs provider”, driver software.
This chapter also contains detailed pictorial representations of the driver software and how it
interfaces with other components. The chapter also describes how the driver software interfaces
with the hardware, the operating system, and other components of the InfiniBand Linux software
stack.

2.2 Design Notes
This section specifically addresses some of the design choices made in this architecture, how the
API design was derived and how these decisions resulted in the final API’s. This section would
provide the reader specifically with deviations from the verb specification and the reason for
those choices.

Table 2–1 Table of Deviations from InifiniBand Specifications

No Description Comment
1. Multiple

handles passed
to Verb
functions

Several verb specifications accept multiple handles, for e.g. create_qp
take both a ca_handle_t and a pd_handle_t. Since the PD is already
associated with a CA when the PD was created, the verb API’s don’t
require both a ca_handle_t and a pd_handle_t. In all such cases just the
pd_handle_t is specified in the verb API’s. The verb consumer could
maintain the association of the pd_handle_t to the ca_handle_t for
internal tracking. This removes additional checks that would otherwise
need to be performed by each verb provider functions, thereby
eliminating redundant information passing and checking.

2. Specifying a
PD with all
Verb API’s.
(create_cq and
create_pd)

Verbs do not specify a PD for creating a completion queue and reliable
datagram domain objects. The architecture did not specify a PD
association with the CQ because the CQ could be associated with
multiple QP’s, where each QP could belong to multiple PD’s. Operating
systems could enforce this process ownership in different ways, but the
PD is a better way to make that association between IB resources. If a
process intends to allocate a CQ, it is expected to have a valid protection
domain created before the CQ is created. If the application requires
managing multiple PD’s and QP’s belonging to multiple PD’s, it can
still associate both QP’s to the same CQ as long as the PD is valid for
that process. The concept is extended for reliable datagram domains for
consistency of all resource allocation API’s.

3. Passing
handles for
callback
notification

Handles such as cq_handle etc are opaque objects private to each HCA
specific driver. Verb requires the callback notification function to pass
the handle in the notification. This handle is not of much use to the
client receiving the callback. For e.g. it cannot identify its internal
context associated with this resource. Moreover this would require the
API consumer to take a handle, and search some data structure to
identify its internal context before it can perform any useful processing.
For e.g. Interrupt registration functions (say request_irq () in Linux™)

HCA Driver DDK 6

No Description Comment
pass a context back provided during the registration. Most verb API’s
that require callbacks are modeled in the same way. For e.g. resource
create calls such as create_cq etc take a context as parameter. In case of
a completion callback or error notifications, the context provided during
the create call is passed back to the application rather than the handle
that caused the event. Applications are expected to obtain the handle
from their context for further processing.

4. SMA below
the Channel
Interface

Verb requires each vendor to perform all processing of Subnet
Management Packets below in the Channel Interface. Some vendors
provide this behavior by having processing capability in the adapter
hardware. Some vendors may choose to manage this via software. The
Subnet Management Agent (SMA) functionality is very generic and is
not different from vendor to vendor, since the requests and responses are
specified by the architecture specification. To avoid duplicating this
functionality in the software by emulating QP access in software and to
manage this efficiently the SMA role is divided to Vendor neutral and
Vendor specific pieces. The response management is performed above
in the InfiniBand Access Layer, and any related hardware management
function is performed in the HCA driver software. Say setting a port
state is a hardware function, which is performed by a generic
ci_local_mad () function supplied by the vendor, rest of the state
management is managed in a vendor neutral way. Such capability is
exposed as a port capability in the port attribute structure.

5. LID events and
Port events.

There are other systems related drivers that are require to be notified by
the HCA drivers on certain events, say for e.g. When the port is
programmed with a new LID. These could be systems management
drivers. When the SMA is managed in the Access Layer, this event can
be easily passed to the consumers to notify of a change in the fabric
related to local HCA’s. In case where the SMA is managed in hardware,
it might be required to proxy the packets even after consumption so that
systems management drivers can make use of this event in a useful way.
This is not required functionality by the HCA vendors, but this behavior
would give a event driven method to pass those events which is a better
programming model than the polling operation for driver software. A
subnet manager would need to know when a port goes from down->init
which could also be beneficial if the HCA vendors generate notifications
for these events.

6. Passing more
than one work
request for
posting and
completions

Post and Poll verbs accept more then one request. This model is useful
for applications posting receive work request, when they usually pre-
post all the receive requests. This allows the consumer to pass all once,
instead of posting one at a time. For user mode functions when the HCA
vendor does not provide OS bypass drivers in user-mode, these
functions would be performed in the kernel via a trap to the kernel,
either via a syscall or an ioctl call. This mode of passing multiple
requests facilitates one trap to read and perform all the operations in a
single ioctl, instead of making a single call to kernel for each request.
Grouping allows an efficient implementation even if the vendor does not
provide OS bypass mechanisms.

HCA Driver DDK 7

No Description Comment
7. Device Name In Unix most device access happens via names, such as /dev/hca1 etc.

Although this is traditional, such naming has always caused more
trouble, especially this does not permit binding or identifying a device
uniquely. Since InfiniBand™ identifies each HCA with a GUID, in the
interest of portability; verbs such as open_ca () take the GUID instead of
a name.

8. Asynchronous
Resource
Destroy

InfiniBand™ architecture specifies callbacks for both completion and
error processing. Handling resource cleanup in a callback driven world
must be handled properly. In order to enforce correct rules of
destruction, the destroy_qp, destroy_cq API’s cannot be called from the
callback themselves. The access layer would maintain a different
cleanup thread and call in a different thread context. This is necessary to
avoid performing cleanup while the access layer could still be using the
resource. Access layer API’s would present an asynchronous destroy
API’s in order to not burden the consumers with the same restriction.

2.3 Theory of Operation – Kernel Mode Driver
This section provides details on the interfaces provided by the driver for use by the InfiniBand
Access Layer and their capabilities. A later section will present a typical usage model of how the
Access Layer uses the interfaces. The majority of the interfaces to the driver are derived from the
Transport Verbs chapter of the InfiniBand™ architecture specification Vol1.0a. It is assumed
that the driver will have verbs functions as specified in the header file ib_hca.h.

Driver initialization Interfaces
The HCA driver provides interfaces that allow the InfiniBand Access Layer open and initialize
the driver, and determine the capabilities of the HCA.

Refer to the InfiniBand specification and the HAC driver API definitions for details on the
specific capabilities provided by these interfaces.

In Linux, the HCA driver is a loadable kernel module that typically gets loaded during system
start-up. The InfiniBand Access Driver is loaded prior to the HCA drivers. This is traditionally
controlled via module dependencies and load order specified in the /etc/modules.conf file.

If the HCA presents itself as a PCI device to the hardware, the driver registers with the PCI
device driver. It provides the PCI device-id/vendor-id to the PCI driver. When the PCI driver
finds an HCA that matches the PCI vendor-id/device-id, it calls the driver back providing
pointers to the HCA resources. These are the typical interfaces used in Linux for PCI devices.

HCA Driver DDK 8

1 . m o d p r o b e

U s e r M o d e K e r n e l M o d e

H C A D r i v e r C o r e K e r n e l

I B A c c e s s
L a y e r

2 . p c i _ r e g i s t e r _ d r i v e r

3 . p c i _ p r o b e

4 . i b _ r e g i s t e r _ h c a

Figure 2-1 Loading the HCA driver

Driver close, unload, and cleanup

The HCA driver notifies the InfiniBand Access Layer when the driver is shutting down. This is
triggered when a HCA hot-remove happens or when the HCA driver is being unloaded. The
HCA driver calls the InfiniBand Access Layer to de-register the HCA leaving the system. The
Access layer must remove all references to the specified HCA before the de-register API call
completes.

Dynamically loaded drivers are protected from unloading by maintaining reference counts. The
driver cleanup_module () call must never fail. Hence it is important to maintain appropriate
reference counts on each open_hca () call from the InfiniBand Access Layer. A typical unload
sequence is shown below.

HCA Driver DDK 9

1 . m o d p r o b e - r

U s e r M o d e K e r n e l M o d e

H C A D r i v e r C o r e K e r n e l

I B A c c e s s
L a y e r

2 . p c i_ u n r e g i s t e r _ d r i v e r

3 . p c i_ r e m o v e

4 . i b _ u n r e g i s t e r _ h c a

Figure 2-2 Unloading the HCA driver

Typical Driver Usage Model
This section describes a typical usage model of the driver interfaces by the InfiniBand Access
Layer. It does not define every possible usage model, but outlines the way the driver interfaces
could be used in a normal operation.

Initialization

The HCA driver is a loadable kernel module that typically gets loaded during system start-up. It
is loaded sometime after the InfiniBand Access Layer.

If the HCA presents itself as a PCI device, the driver is instantiated by the Linux PCI driver.
Upon start-up, the driver performs any required HCA initialization and sets up and initializes the
driver data structures, e.g., things like the event queue, translation and protection table, etc.

Next, the driver registers with the InfiniBand Access Layer providing the GID of the HCA. The
Access Layer provides an interface (ib_register_ci) to allow the driver to perform this
registration. Refer to the InfiniBand Access Layer chapter for details.

The Access Layer can then open and query the driver using the GID to get the resource attributes
of the HCA, such as the number of QPs, CQs, TPT, etc. The Access Layer can then also register
a callback for asynchronous event notifications. This allows the Access Layer the ability to
process unaffiliated events or events that are not associated with any given work request. E.g.,
port state events.

Queue Pair Setup in preparation for sending data

Before the InfiniBand™ Access Layer can send data across the fabric; it must allocate protection
domains, set up queue pairs and completion queues, and establish connections with remote
nodes.

A protection domain must be allocated using the ci_allocate_pd () interface so that it can be
associated with the queue pair when it is created. The Access Layer or upper layers of software

HCA Driver DDK 10

can allocate a separate protection domain for each of its clients or client processes to provide
memory protection between clients and/or processes. If the connection that the access layer is
intending to create is a reliable datagram, the access layer must allocate a reliable datagram
protection domain.

After obtaining a PD, the Access Layer creates a completion queue to be associated with the
work queue pair. This is done using the ci_create_cq () Interface. Next the Access Layer
allocates the queue pair using the ci_create_qp () passing the CQ, PD, and other desired
attributes of the QP. The connection manager component of the Access Layer can then use the
Modify QP interface to modify the state of the queue pair during the connection establishment
process.

Memory Registration in preparation for sending data

After the queue pairs have been allocated and set up for communication, the Access Layer must
register all memory buffers that contain the user data buffers to/from which data will be
transferred. To accomplish this, the Access Layer uses the memory registration interfaces of the
driver.

The Register Memory Region interface is used to register virtual addresses and the Register
Physical Region is used to register physical memory regions. The Access Layer can use the
Register Shared Memory Region to register memory that is shared between protection domains.
It can use the memory window routines to allocate a memory window and then later bind the
memory window to a memory region using a work request, but no mater which registration
mechanism is used; all memory buffers that are described in work requests must be registered.

Posting Work Requests

Once the Access Layer has allocated and initialized queue pairs and completion queues and
registered the memory buffers associated with a data transfer, the Access Layer uses the Post
Send and Post Receive interfaces to post work requests.

The diagram below illustrates the typical flow of posting a send or receive work request.

1. Channel Driver posts Work Request to Access Layer.

2. Access Layer Posts the Work Request to the appropriate driver.

3. HCA driver builds WQE, posts it to the H/W queue, and rings the doorbell.

4. HCA Driver returns to the Access Layer.

5. Access Layer returns to the Channel Driver.

6. HCA transfers data to/from the data buffer asynchronously while processing the WQE.

HCA Driver DDK 11

HCA

InfiniBand Access Layer

Data Buffer
Channel Driver

Step 2

Step 3

Step 4

Step 5

data buffer
address

control
information

o
o
o

WQE stack

HCA Driver

Step 1

Step 6

Figure 2-3 Posting Work Requests

Processing Completions

Once work requests have been posted to the Send or Receive queues and the H/W has completed
processing the work requests, the Access Layer can process the associated completions.

The diagram below shows the typical flow of the completion processing.

1. HCA writes a completion queue entry to CQ entry queue managed by the HCA driver.

2. HCA may write an event queue entry to notify the HCA driver about a completion queue
event.

3. HCA hardware delivers interrupt that the OS will eventually deliver to the HCA specific
driver for processing.

4. Interrupt processing routine retrieves the event queue and processes the event generated
by HCA in order.

5. HCA driver delivers the CQ notification to the Access Layer for further processing.

6. Access Layer performs a ci_poll_cq () operation to retrieve the contents of the
Completion queue entry.

7. HCA driver now copies the CQ entry to application buffer translating data in a generic
format as specified by in the API specification.

HCA Driver DDK 12

8. HCA driver returns back to Access Layer.

Completion
queue entry

Completion
Queue entry

Completion
queue entry

o
o
o

InfiniBand Access LayerCQ Entry Buffer

completion
queue

Step 1

Event
queue entry

Event
queue entry

Event
queue entry

o
o
o HCA's global

event queue

Step 2HCA

HCA Driver

Step 3

Step 4

Step 5 Step 6 Step 8Step 7

Figure 2-4 Completion Processing

Memory Deregistration

Once the work requests have completed, the Access Layer can use the Deregister memory
interfaces to deregister the memory buffers. This frees up the TPT entries for use in subsequent
memory registration operations. It is not uncommon for memory buffers to be registered and
deregistered for each I/O operation, but it is possible for the Access Layer or upper layers of
software to reuse the same I/O buffers and thus only need to register the memory once. This can
lead to increased performance in some applications.

Destroying Queue Pairs and Cleaning up after Disconnections

Typically when a connection with a remote node is terminated, the Access Layer will release the
resources associated with that connection for use in subsequent connections. The Access Layer
uses the Destroy Queue Pair interface to free the queue pair for subsequent use. It uses the
Destroy Completion Queue interface to release the CQ resources. It uses Deallocate Protection
Domain and Deallocate Reliable Datagram Domain to free the PD resources that were associated
with the QP.

HCA Driver DDK 13

2.4 User Mode Architecture
InfiniBand™ architecture permits direct user mode access to the hardware. The user mode
architecture is designed to meet the following high level needs with a goal of providing robust
solutions for InfiniBand™ software and hardware products.

• The HCA vendor would be required to provide a dynamically loadable library to aid
direct user mode access to the hardware. If the vendor is not able to provide such a
library, then the access layer would still permit access to the hardware for user mode
applications via kernel support to the speed path data transfer operations (DTO). Direct
user mode access bypassing kernel interface will be better performing than requiring
kernel support to perform the same.

o User-mode support is provided by a central dispatcher function in user and kernel
mode via the InfiniBand™ access layer. HCA support library in user mode is not
expected to communicate directly with its driver module. This facilitates the
kernel mode Access Layer as the only agent authenticating resource creations and
validation of handles passed from user mode to kernel mode.

• Provide ability to vendor specific processing for user mode support. For e.g. some
vendors may allocate buffers for Completion Queue in user mode and program hardware
appropriately, and some may choose to do the buffer allocation in kernel mode driver and
map those to user mode after creation. In order to aid this behavior the interface functions
will provide a pre processing trigger and a post-processing trigger for each verb support
in user mode.

Application

User Mode Access Layer
(UAL)

Vendor Specifc HCA
library

Kernel Proxy
(UAL Support)

Kernel Mode Access Layer
(KAL)

Vendor Specific HCA driver

1 10 A3

2

9

A283

4 7 A1

A05 6

Figure 2-5 User Mode Support Flow

HCA Driver DDK 14

The different steps in interactions are listed here for creating a completion queue. Some vendors
would prefer to allocate memory for user mode framework in the context of the user address
space. Some vendors due to certain hardware restrictions might create them in kernel mode and
perform any necessary memory mappings of a kernel mode buffer. Using user address for
allocation and maintenance is the preferred approach since the operating system may have a
restricted number of linear kernel address space limitations. Moreover the traditional process
accounting for the kernel allocated memory for user mode process is not tracked in per process
cost structure in most Unix operating systems.

Allocating CQ memory in user mode
1. Application calls UAL to allocate a CQ
2. UAL call the user mode support library if one is available. This calls is called pre-create

which is performed before the actual creation of the CQ. The vendor is expected to
perform any setup required for OS bypass in this step. It allocates a buffer so that it can
pass and receive information from its kernel mode driver. For e.g. the Vendor library may
choose to now allocate memory in user mode, and pass the buffer addresses to its kernel
mode HCA driver.

3. UAL passes this driver private data to the kernel proxy component in the kernel. The
kernel proxy support component then copies the private driver specific data to a kernel
mode buffer before calling the KAL for the resource creation.

4. Kernel proxy calls the kernel mode AL for the CQ creation
5. KAL now calls the kernel mode HCA driver for the CQ to be created passing a pointer to

the kernel mode buffer that contains the data, which was passed, by the user mode HCA
specific library.

6. Kernel mode HCA driver now uses the buffers passed from user-mode. Using OS
specified functions to pin the buffer down the CQ memory, perform the real creation of
the CQ and returns back to KAL.

7. KAL performs resource-tracking operations and returns a handle back to the kernel proxy
component.

8. User kernel proxy now performs some additional tracking so that it can facilitate
asynchronous notifications in user mode for this CQ and returns back to UAL

9. UAL prepares and calls the user mode HCA specific library for post-create calls.
10. UAL now prepares the ib_cq_handle and returns back to user mode application that made

the call.

In cases where the driver allocates the buffers, the user mode component may perform the
memory mapping in the post-create calls. The advantages of the UAL facilitating the kernel
dialogue between the user mode HCA library and the kernel mode HCA driver are.

• Single point of cleanup trigger when user program exits or performs an abnormal exit.
• Fewer drivers interfaces necessary and simplifies the infrastructure and client tracking

from the HCA drivers.
• All callbacks are facilitated from the UAL and the kernel proxy. Any necessary threads in

order to perform the notification is not required to be maintained by each vendor
simplifying the code that would otherwise be duplicated in each vendor library.

	Introduction
	Architectural Specification – HCA Specific Driver
	Introduction
	Design Notes
	Theory of Operation – Kernel Mode Driver
	Driver initialization Interfaces
	Driver close, unload, and cleanup

	Typical Driver Usage Model
	Initialization
	Queue Pair Setup in preparation for sending data
	Memory Registration in preparation for sending data
	Posting Work Requests
	Processing Completions
	Memory Deregistration
	Destroying Queue Pairs and Cleaning up after Disconnections

	User Mode Architecture
	Allocating CQ memory in user mode

