
1. Architectural Specification – Offload
Sockets Framework and Sockets Direct
Protocol (SDP)

1.1 Introduction

The Offload Sockets Framework (OSF) enables network applications to utilize Linux
sockets and File I/O APIs to communicate with remote endpoints across a system area
network (SAN), while bypassing the kernel resident TCP/IP protocol stack. The offload
sockets framework is completely transport and protocol independent and can be used to
support multiple offload technologies. For the rest of this document, as an application of
the Offload Sockets Framework, Sockets Direct Protocol (SDP) is used as the target
protocol and InfiniBand as the target transport. However, other transport technologies
(such as TCP Offload Engines - TOE) and protocols (such as iSCSI) can easily make use
of the offload sockets framework.

The Sockets Direct Protocol (SDP) is an InfiniBand specific protocol defined by the
Software Working Group (SWG) of the InfiniBand Trade Association (IBTA). It defines
a standard wire protocol over IBA fabric to support stream sockets (SOCK_STREAM)
networking over IBA. SDP utilizes various InfiniBand features (such as remote DMA
(RDMA), memory windows, solicited events etc.) for high-performance zero-copy data
transfers. SDP is a pure wire-protocol level specification and does not go into any socket
API or implementation specifics.

While IP-Over-IB (IPoIB) specifies a mapping of IP (both v4 & v6) protocols over IBA
fabric and treats the IBA fabric simply as the link layer, SDP facilitates the direct
mapping of stream connections to InfiniBand reliable connections (or virtual circuits).
The IPoIB specification is currently being created and published by an IETF working
group. The IPoIB specification will define the packet level format of IP packets on the
IBA fabric, and describe the InfiniBand address resolution protocol (IBARP).
Conceptually, the IPoIB driver in Linux will look like a network driver and will plug- in
underneath the IP stack as any standard Linux network device. The IPoIB driver exposes
a network device per IBA port (and partition) on the host system and these devices are
used to assign (statically or dynamically - using protocols such as DHCP) IP addresses.
The SDP stack simply makes use of these IP assignments for endpoint identifications.

Sockets Direct Protocol only deals with stream sockets, and if installed in a system,
allows bypassing the OS resident TCP stack for stream connections between any
endpoints on the IBA fabric. All other socket types (such as datagram, raw, packet etc.)
are supported by the Linux IP stack and operate over the IPoIB link drivers. The IPoIB
stack has no dependency on the SDP stack; however, the SDP stack depends on IPoIB
drivers for local IP assignments and for IP address resolution.

1.2 Requirements for Offload Sockets Framework in Linux

This section lists a set of requirements and goals for offload sockets framework support
in Linux. The items listed in this section are by no means complete and may need to be
further refined before finalizing on the best solution.

?? All offload protocols/transports need to have a standard Linux network driver.
This allows network administrators to use standard tools (like ipconfig) to
configure and manage the network interfaces and assign IP addresses using static
or dynamic methods.

?? The offload sockets framework should work with and without kernel patches. To
this effect, the offload protocols and transports will reside under a new offload
address family (AF_INET_OFFLOAD) module. Applications will be able to
create socket instances over this new address family directly. However, for
complete application transparency, an optional minimal patch to the Linux kernel
can be applied (socket.c) to allow re-direction of AF_INET sockets to the new
AF_INET_OFFLOAD address family. The AF_INET_OFFLOAD module will
work as a protocol switch and interact with the AF_INET address family. The
patch also defines a new address family called AF_INET_DIRECT for
applications that want to be strictly using the OS network stack. This kernel patch
can be optional based on distributor and/or customer requirements.

?? All standard socket APIs and File I/O APIs that are supported over the OS
resident network stack should be supported over offload sockets.

?? Support for Asynchronous I/O (AIO) being added to Linux. AIO support is being
worked in Linux community. The offload framework should utilize this to support
newer protocol and transports that are natively asynchronous. (For example, SDP
stack could utilize the AIO support to support PIPELINED mode in SDP)

?? Architecture should support a layered design so as to easily support multiple
offload technologies, and not just SDP. Makes sure the added offload sockets
framework is useful for multiple offload technologies.

?? The proposed architecture should support implementations optimized for zero-
copy data transfer modes between application buffers across the connection. High
performance can be achieved by avoiding the data copies and using RDMA
support in SANs to do zero copy transfers. This mode is typically useful for large
data transfers where the overhead of setting up RDMA is negligible compared to
the buffer copying costs.

?? The proposed architecture should support implementations optimized for low
latency small data transfer operations. Use of send/receive operations incurs lower
latency than RDMA operations that needs explicit setup.

?? Behavior with signals should be exactly same as with existing standard sockets.

?? Listen() on sockets bound to multiple local interfaces (with IPADDR_ANY) on a
AF_INET socket should listen for connections on all available IP network
interfaces in the system (both offloaded, and non-offloaded). This requires the
listen() call from application with IPADDR_ANY to be replicated across all
protocol providers including the in-kernel TCP stack.

?? select() should work across AF_INET socket file descriptors (fd) supported by
different protocol/transport providers including the in-kernel IP stack. This
guarantees complete transparency at the socket layer irrespective of which
protocol/transport provider is bound to a socket. .

?? Operations over socket connections bound to the in-kernel protocol (TCP/IP)
stack should be directed to the kernel TCP/IP stack with minimum overhead.
Application bound to kernel network stack should see negligible performance
impact because of offload sockets support.

?? Ability to fallback to kernel TCP/IP stack dynamically in case of
operation/connection failure in direct mapping of stream connections to offloaded
protocols/transports. Connection requests for AF_INET sockets that fail over
offload stack is automatically retried with the kernel TCP/IP stack. Once a direct
mapped connection is established, it cannot be failed back to the TCP stack, and
any subsequent failures are reported to application as typical socket operation
failures.

?? Offload Socket framework enables sockets of type STREAMS only. Other socket
types will use only the OS network stack.

?? Offload sockets framework will support offloading of stream sessions both within
local subnet and outside local subnet that needs routing. Offload
protocols/transports will have the ability to specify if they do self-routing or need
routing assistance. Ability to offload stream sessions to remote subnet will be
useful for TOE vendors in general and for IBA edge router vendors who map SDP
sessions on IBA fabric to TCP sessions outside fabric. For protocols/transports
that do self- routing, the offload sockets framework simply forwards the requests.
For protocols/transports that need routing support (such as SDP), the framework
utilizes the OS route tables and applies its configurable policies before forwarding
requests to offload transports.

?? Since the socket extensions defined by the Interconnect Software Consortium
(ICSC) in the open group are work in progress at this time, the offload sockets
framework will not attempt to address them in this phase. This could be attempted
at a later phase.

?? Offload sockets framework should not affect any existing Linux application
designs that uses standard OS abstractions and features (such as fork(), exec(),
dup(), clone(), etc.). Transparency to applications should be maintained.

?? Offload sockets framework should support both user-mode and kernel-mode
socket clients. Maintain the existing socket semantics for existing user mode or
kernel mode clients.

?? The offload sockets framework currently deals with only IPv4 address family.
Even though the same offload concepts can be equally applied to offload IPv6
family, it is deferred for later stages of the project.

1.3 System Structural Overview

Sockets (BSD definition) are the most common API used by applications for accessing
the network stack on most modern operating systems (including Linux). Most
implementations of Sockets such as in Linux also support File I/O APIs (such as read,
write) to operate over sockets. Offload Sockets Framework allow applications to use
these same standard sockets and File I/O APIs to transparently communicate with remote
endpoints/nodes across a system area network (SAN), bypassing the kernel resident
TCP/IP protocol stack.

1.3.1 Existing Sockets Architecture in Linux

Currently, Linux implements the Sockets and associated networking protocol stack as a
series of connected layers of software modules, all kernel resident. These layers are
initialized and bound to each other during kernel start up. Figure 1 shows Linux
networking architecture.

Figure 1 Linux Networking Architecture

Each network object is represented as a socket. Sockets are associated with processes in
the same way that i-nodes are associated; sockets can be shared between processes by
having its process data structures pointing to the same socket data structure.

 Linux also associates a VFS inode and file descriptor, for each socket allocation, to
facilitate the normal file operations over the socket handle. At kernel initialization time,
the address families built into the kernel register themselves with the BSD socket
interface. Later on, as applications create and use BSD sockets, an association is made
between the BSD socket and its supporting address family.

The Key features of the existing Linux network architecture are:

1. Network device drivers communicate with the hardware devices. There is one
device driver module for each possible hardware device.

2. The device independent interface module provides a consistent view of all of
the hardware devices so that higher levels in the subsystem don't need specific
knowledge of the hardware in use.

3. The network protocol modules are responsible for implementing each of the
possible network transport protocols.

4. The protocol independent interface (BSD Socket Layer) module provides an
interface that is independent of hardware devices and network protocol. This
is the interface module that is used by other kernel subsystems to access the
network without having a dependency on particular protocols or hardware.

1.3.2 Limitations in Existing Linux Sockets Architecture

The current AF_INET sockets architecture in Linux is hard-wired to the in-kernel TCP/IP
network stack; making it impossible to hook into the socket API (and file I/O API) calls
in user-space without standard C-library code modifications (or load time hooks).

In the current network architecture the protocol layers are tightly coupled to each other
and pre- initialized at kernel initialization, making it impossible to load and select
between protocol providers that possibly support the same address family (such as
AF_INET).

Kernel coding shortcuts do not follow a strict protocol dispatch model within the
AF_INET protocol family. Without kernel modifications, introducing new AF_INET
transport protocols is impossible without providing a completely new address family.

1.3.3 Evaluations of Alternative Architectures

This section briefly surveys the related work done in this area and explores the solution
space for application-transparent high performance I/O architecture (including user-mode
I/O) in Linux.

Some of the previous work in this space has traded off transparency for performance.
These solutions typically define a custom API that fits the underlying hardware
architecture and requires applications to be recoded. An example for this approach is VI
architecture that specifies its own VIPL API.

For complete application transparency, the user-mode I/O architecture needs to fit
underneath the existing standard socket API. Survey of related work shows the following
as some of the possible solutions for transparently supporting high-performance I/O
underneath the socket and File I/O APIs:

a) User-mode implementation of high-performance sockets with direct mapping of
stream connections to NIC hardware resources from user-mode. This would
involve modifying the user-mode library that exports the socket and file I/O APIs
(e.g. glibc), such that the socket and file I/O APIs are abstracted out into a
separate offload user-mode I/O library that gets demand loaded by glibc. The I/O
library will provide a bottom edge interface that can be used by specific protocol
libraries (such as one for SDP) to register with it. This solution also requires
changes to the socket driver in kernel for supporting operations such as select(),
fork(), dup() etc. The user-mode I/O library provides two code paths : If there are
no offload user-mode I/O libraries (socket provider for network I/O, file system
provider for file I/O) installed, the code is same as it is currently in glibc (i.e.
makes a syscall to kernel components). If user-mode providers exist, they are
transparently loaded. Another option (mostly cosmetic) is to encapsulate (contain)
the standard glibc library within another library. This new library exposes the
same set of interfaces as the standard glibc library, and decides if a specific API
call needs to be handled by it or forwarded to the standard glibc. While this
solution might provide the most optimal performance for speed path operations,
the major drawbacks with this approach is that it requires extensive changes to
standard C-libraries and kernel socket driver to support direct user-mode mapping
of stream sockets transparently to applications.

b) Define a new address family (AF_INET_OFFLOAD) for enabling any offload
protocols/transports and modify the socket driver (socket.c) to transparently re-
direct AF_INET sockets to AF_INET_OFFLOAD. The major difference between

this option and option (a) is the additional overhead of traps to the kernel
(syscalls) in speed path operations. On IA-32 architecture, the syscall overhead
was measured at 805 nanoseconds on a 933 MHz processor; IA-64 performance is
sub 947 nanoseconds, which implies the syscall overhead to trap to kernel is not
the most significant component in today’s TCP/IP stack code path. This solution
restricts the kernel modifications to the socket driver to enable application
transparency by re-directing sockets created under AF_INET address family to
the AF_INET_OFFLOAD address family., and provides better modularity to fit
into the Linux OS.

c) Changing the Linux loader to transparently hook into the socket and file I/O calls
from user-mode. This requires modifying the standard Linux loader to
dynamically load the user-mode I/O library into an application’s address space
and mangle the in-memory function tables (created when glibc was loaded) so
that the socket and file I/O functions point to the equivalent functions in the new
library (method often used by debuggers). The dynamic loading and function
pointer mangling can be done at the time of loading the glibc library, or could be
delayed until the first socket or file I/O API call makes the syscall and enters the
kernel. Some of the related work shows this solution has been successfully
applied for transparent performance analysis of libraries. However, the biggest
drawback with this solution is that it requires changes to the loader, and makes it
harder to debug.

d) Use the call intercept methods employed in strace(1) and ltrace(1) to modify the
behavior of network and file I/O calls transparently to application. This approach
is very similar to solution(c) and suffers the same drawbacks.

The current implementation of sockets stack in Linux does not leave room for adding
high-performance network I/O support easily. Similar limitation also exists in the file
system stack. Based on initial research, it appears that the kernel-mode solution
(explained as option (b) above) offers almost the same performance benefits as the user-
mode solution, with far less complexity and better architectural modularity to fit into the
Linux OS.

1.3.4 Software Component View

The Offload Sockets Framework architecture implements high-performance socket
support in the kernel by providing a new Offload Protocol Switch (OPS) via a new
address family (AF_INET_OFFLOAD) module. This new address family module will
support dynamic binding of offload protocols and transports under the offload family.
The offload protocols will register with the offload family and the transport modules will
register with the offload protocol modules. The offload sockets architecture is shown in
Figure 2.

U

Legacy user-mode
socket application

Glibc
User

Kernel

Socket Layer
Virtual

File
System
(VFS)

TOE Hardware

Hardware

Existing OS Components

New OS Components

Other new Components

IBA specific Components

Hardware

Existing OS Components

New OS Components

Other new Components

IBA specific Components

TOE
Protocol
Module

Network Link Level Device Interface

IP

UDP TCP

ARPA Stack

ARP IBARP

Inet
Neighbor

Table

IPoIB Link
Driver

InfiniBand
Transport
Module

TOE Link
Driver

HCA Driver (Verbs)

InfiniBand Host Channel Adapter

InfiniBand Access Layer

Address Family AF_INET_OFFLOAD
(Offload Protocol Switch)Address Family AF_INET

Sockets Direct
Protocol
Module

Transport Interface

Socket Interface

Figure 2 Offload Sockets framwork in the kernel

There are multiple major components to this, such as the Offload Protocol Switch
Module, the SDP protocol module (which include the socket and transport Interface), and
the InfiniBand Transport module.

1.3.5 Component Details:

1.3.5.1 Offload Protocol Switch

Component Type Offload Protocol Switch: New kernel module supporting
AF_INET_OFFLOAD.

Purpose The OPS module exposes a new address family
(AF_INET_OFFLOAD) and preserves the protocol
operation semantics with the kernel socket driver at the
top while providing a new offload sock structure,
interface, and binding to offload protocols and transports
underneath to support hardware devices capable of
offloading all reliable transport features.

Functionality The OPS module provides the standard socket call
interface for AF_INET_OFFLOAD and switches socket
traffic across multiple protocol providers underneath.
Provides new binding interface for new offload protocol
modules to register network interface information along
with a new offload proto operations. Attempts to switch
sock_stream connections to offload protocols and falls
back to standard stack if failures occur. Switches to
standard stack at the AF_INET interface level requiring no
changes to the AF_INET stack.

Externally resources required Offload protocol and transport modules.
External interfaces All external interfaces to AF_INET are defined by the

Linux socket calls in include/linux/net.h and
include/linux/sock.h. There is a new offload protocol
structure and interface used for offload protocols that
register with the AF_INET_OFFLOAD address family.

Internal interfaces The OPS module is a thin veneer between the socket
driver and the offload and non-offload INET protocols.
Internal interfaces will be defined to provide routing
information for the offload protocol modules and transport
interfaces.

Dependencies and Inter-
relationships with other components

The OPS is dependent on standard socket driver interface
at the top and a new offload protocol structure and
interface at the bottom.

Requirements and constraints The OPS must be built to support a completely different
address family while at the same time be designed to
support switching across the standard AF_INET address
family. This will enable Linux distributors the freedom to
decide whether or not to support legacy IP socket
applications under AF_INET or simply support offloading
only under the new AF_INET_OFFLOAD address family.
Modifications to the Linux kernel for transparent

AF_INET support must be kept to a minimum.
Development
Verification/Validation/Analysis/Test
strategies

Standard socket applications test suites.

1.3.5.2 Offload Protocol Module - Sockets Direct

Component Type Offload Protocol Module – Socket Direct Protocol: A
new loadable Linux kernel module.

Purpose The OP module provides standard socket session
management across reliable transports. SDP is a standard
wire protocol that maps TCP_STREAMS to reliable
networks like InfiniBand. Preserves the standard socket
abstraction at the top and manages these sessions across a
new offload transport interface at the bottom.

Functionality The OP module provides standard socket semantics via
protocol operations exported up to OPS. Manages sockets
across multiple transport providers underneath. Supports
new binding interface for new offload transport modules
and the new binding to OPS. Attempts to switch
sock_stream connections to offload transports beneath.

Externally resources required OPS (AF_INET_OFFLOAD address family) module and
the IB Transport Module.

External interfaces All external interfaces are defined by the new offload
protocol structure and interface at the top and the new
offload transport operations for the bottom half.

Internal interfaces The OP module includes a socket/session management at
the top, a Sockets Direct wire protocol engine in the
middle and a transport management and interface at the
bottom that is capable of supporting multiple transport
modules.

Dependencies and Inter-
relationships with other major
components

The OP is dependent on OPS definitions at the top, SDP
specification at the middleware layer, and the OTI
definitions at the bottom. All of these are new interfaces
with the exception of the proto_ops that is already
defined.

Requirements and constraints The OP must preserve the socket semantics at the top and
support SDP specification as defined in the IBTA.
Required to support InfiniBand transports.

Development
Verification/Validation/Analysis/Test
strategies

Standard socket applications test suites.

1.3.5.3 Offload Transport Module - InfiniBand Transport

Component Type Offload Transport Module : A new loadable Linux
kernel module.

Purpose Provides abstraction of the underlying IBA Access
Interface.

Functionality Maps IBA access interfaces to standard OTI operations
for socket based offload protocol modules. Transport
services exported include: transport registration, IP to
IB name services, IB connection services, memory
mapping, and RDMA and data transfer.

Externally resources required The IB-OT requires OTI definitions and registration
mechanisms and InfiniBand Access Layer.

Externally visible attributes OTI defined operations.
External interfaces OTI defined operations and interface mechanism.
Internal interfaces Interface with IPoIB device driver for address

resolution.
Dependencies and Inter-
relationships with other major
components

The OTI dependent on new definitions of OTI
operations interface and structure

Requirements and constraints Requirements of these transports include memory
registration, memory window binding, message sends
and receives, RDMA write and reads, connect
request/accept/reject/listen, and more (TBD)

Development
Verification/Validation/Analysis/Test
strategies

IB_AT developer unit tests. Standard socket
applications test suites.

1.4 Theory of Operation

1.4.1 Socket Driver and Offload Protocol Switch Module Interaction

The Offload Protocol Switch (OPS) module provides a dynamic binding facility for
offload protocols modules. It is a loadable module that registers dynamically with the
Linux socket driver (socket.c). It exposes a new address family (AF_INET_OFFLOAD)
but at the same time interacts with the AF_INET address family so that IPPROTO_ANY
traffic can be directed to both the offload protocols under AF_INET_OFFLOAD and to
the standard AF_INET protocols. Applications can also directly create sockets on
AF_INET_OFFLOAD address family and bind to any offload protocols registered with
this offload address family, without requiring any kernel patches.

In order to seamlessly support sockets created by applications with AF_INET address
family a small patch must be applied to the socket driver (socket.c) sock_create() code to
direct AF_INET address traffic to the offload address family module
(AF_INET_OFFLOAD) exposed by the OPS module. The OPS module will switch
sockets appropriately based on family, protocol type, and protocol. No modifications are
needed in the AF_INET stack since the OPS module will interact with the standard
AF_INET stack via the address family socket interface. Figure 3 shows the original
Linux socket driver address family switching logic and the changes in the proposed
kernel patch.

Address
Family ?

AF_INET_OFFLOAD AF_INET

Forward Call to
AF_INET

Forward Call to
AF_INET_OFFLO

AD

Linux Socket Driver (socket.c)

Address
Family ?

AF_INET_OFFLOAD AF_INET_DIRECT

Forward Call to
AF_INET

Forward Call to
AF_INET_OFFLOAD

AF_INET

Patched Socket Driver (socket.c)

Protocol
Type ==

STREAM

YES

NO

AF_INET_O
FFLOAD

registered ?

YES NO

AF_INET

socket.c

AF_INET_OFFLO
AD

Figure 3: Proposed Patch to Linux Socket Driver

Figure 4 shows a high level overview of the protocol switching logic during socket
creation by the offload protocol switch implemented under the AF_INET_OFFLOAD
address family.

AF_INET_OFFLOAD

AF_INET

IPPROTO_SDP

YES

sock_create() allocates a
socket structure and gets

inode, then calls
offload_create()

socket.cApplication

Call sock_create with
AF_INET family to setup

native socket

Create TCP
Sock and link to native

socket.
sock->proto = TCP

sock->tp_info = tcp_opts

org socket

native socket

native socket

Set org->ops
to AF_INET.

Assimilate into
org and

release native
socket and

inode.

org socket has
socket->file = fd

 offload protocols
registered and
Type=Streams?

 org socket == AF_INET ops

Set org->ops to
call af offload.
org->sock =

offload structure
which includes

org socket, native
socket (if

patched), and
matching
protocols.

 org socket == AF_INET_OFFLOAD ops

AF_INET
or

AF_INET_OFFLOAD

sock_create() allocates a
socket structure and gets

inode, then calls
inet_create()

native_socket
successful?

socket.c patch applied
and protocol is

supported by AF_INET

no socket.c applied or
protocol is not

supported by AF_INET

NO

YES

create matching
offload sock structure

and setup protocol, then
call sock->prot->init

protocol init function

offload
protocol init
sucessful?

NO

Native
socket?

YES

NO

YES

 org socket == offload protocol ops

IP_PROTO_ANY?

NO

YES

Native
socket?NO

YES

Set org->ops
to call directly

to offload
protocol.

Release native
socket and

inode.

NO

ERROR

init all registered
offload protocols

all init's
failed?

YES

NO

Figure 4: Protocol Switching Logic in AF_INET_OFFLOAD for Socket Creation

1.4.2 Offload Protocol Switch and SDP Module Interaction

Figure 5 shows the various steps involved in the OPS and offload protocol modules
initialization and operation

1. The socket.c sock_create() code is modified to forward all AF_INET sock_create
calls to AF_INET_OFFLOAD module. The AF_INET_OFFLOAD module will
direct the create call based on the offload protocols that have registered. If the
create is forwarded back to the AF_INET, the OPS will use AF_INET_DIRECT
so that the sock_create() code will know to switch the create directly to the
AF_INET path thus sending all subsequent socket calls directly to the correct
family.

2. The AF_INET_OFFLOAD module, as part of its initialization, registers its
address family AF_INET_OFFLOAD to the socket layer by calling sock_register
() call back to the socket layer. All future socket calls, with address family
AF_INET_OFFLOAD will be directed by the socket layer to the OPS layer.

3. When Offload Protocol modules get loaded, the ops_proto_register () is called to
register their entry points and capabilities like self- routing, rdma etc to the
AF_INET_OFFLOAD module.

4. When a network interface configuration changes (address assignment, address
change, route changes, etc.), the Offload protocol module which is bound to this
network interface notifies the APS module by calling ops_inet_notification().

5. Depending on the incoming request, the OPS module will then switch to proper
protocol module. The switching policy depends on the protocol capabilities,
binding priority set by the user. The AF_INET stack is the default stack, and if
none of the offload protocol modules are loaded or if none of the module
capabilities matches the incoming request, the OPS will forward the request to the
AF_INET stack. For protocol modules that do not support self- routing, the
AF_INET_OFFLOAD driver will handle the routing issues.

Once an appropriate protocol module is chosen, it is up to the protocol stack to handle the
request. For example if SDP protocol module is chosen to service an request, then it is up
to the SDP module to establish a session with its peer, pre register buffer element and
decide on mode of data transfer (Send vs. RDMA Write for example).

Legacy user-mode
socket application

Glibc
User

Kernel

Socket Layer

Address Family Inet
Offload Protocol Switch

UDP

ARPA Stack
Sockets

Direct Protocol

Kernel
Initialization

1
sock_init()

3

OPS calls sock_register() to
register for address family

AF_INET_OFFLOAD

4

TCP

IP

2

OPS will switch to proper OP
based on registration info.

OPS will route for OP modules
that do not self route.

Registers protocol, type and
capabilities (self-routing, etc.)

ops_register_protosw()

5

Registers network interface
information for switching
ops_inet_notification()

IPPROTO_SDP 5

Wildcard will fallback to
default stack after OP error

 Figure 5 OPS and SDP interaction

1.4.3 SDP and InfiniBand Transport Interaction

Offload Transports (OTs) implement the offload transport interface abstractions. The
InfiniBand transport is designed to be a kernel loadable module, which provides an
InfiniBand hardware transport specific implementation of the offload transport
abstraction defined by the offload transport interface.

Figure 6 shows the various steps involved in the OT module initialization and operation.

1. The InfiniBand (IB) Transport module will register with the SDP module and
provide the transport operations interface and capabilities.

2. The InfiniBand Transport module obtains kernel notification services for network
devices, IP configuration, and IP routing information using the device name
provided by the link driver. When an IP configuration notification occurs for this
net device the transport module will forward the via the event notification upcall
to SDP, if SDP has registered for events.

3. The SDP module, using the transport register event call, will register for address,
net device, and route changes.

4. The SDP module maintains a list of transports, with address information, and will
switch to appropriate transport based on address information during a socket bind.

Socket Direct Protocol Module

InfiniBand
Transport

Each registered OT is associated with a
link device driver for IP network address

assignment. In order to track network
device configuration changes, the OTI

registers for network device event
notifications.

register_inetaddr_notifer()
register_netdevice_notifier()

register_route_notifier()

InfiniBand Transport
registers with SDP

module
providing transport ops

entry points and
capabilities

sdp_register_tpsw()

2

1

sdp_unregister_tpsw()
is called by the

InfiniBand transport at
module unload time.

transport interfaces exported to SDP
ot_register_event, ot_unregister_event,

ot_create, ot_destroy, ot_connect,
ot_listen, ot_accept, ot_reject, ot_disc,

ot_ioctl, ot_send, ot_recv, ot_rdma_write,
ot_rdma_read, ot_reg_mem,

ot_dereg_mem, etc.

SDP maintains a linked
list of Offload Transport
structures which include

transport function
dispatch table & network

device info

Network Link Level Device
Interface

IPoIB Link
Driver

4

SDP calls transport to
register a callback for

network device events.
Upcall events include

address, device, or route
change.

3

Figure 6 SDP and InfiniBand Transport

1.5 References

InfiniBand Architecture Specification Volume 1, Release 1.0a

Annex B Sockets Direct Protocol (SDP), Release 1.0.a

IP over IB IETF draft: http://www.ietf.org/ids.by.wg/ipoib.html

Fast Sockets reference: http://www.cs.purdue.edu/homes/yau/cs690y/fastsocket.ps

Stream Socket on Shrimp reference:
http://www.cs.princeton.edu/shrimp/Papers/canpc97SS.ps

Memory Mgmt. in User Leve l Network Interfaces reference:

http://ww.cs.berkeley.edu/~mdw/papers

