

-----Offload Sockets Framework and
Sockets Direct Protocol

High Level Design

Draft 2

June 2002

Revision History and Disclaimers

Rev. Date Notes

Draft 1 March 2002 First cut.

Draft 2 June 2002 Updated with new OFFLOAD address family architecture and naming.

Combined Socket Framework and SDP/IBT HLD’s into one document..

All content included and reviewed by internal design team.

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel
disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this
specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

This Specification as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel
Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or
any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the express written consent of Intel Corporation.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002 Intel Corporation.

Approval

Role Signature Date

Responsible Engineer

Engineering Group Leader

Software Engineering Manager

Abstract

The Offload Sockets Framework (OSF) enables network applications to utilize Linux sockets and File I/O
APIs to communicate with remote endpoints across a system area network (SAN), while bypassing the
kernel resident TCP/IP protocol stack. The offload sockets framework is completely transport and
protocol independent and can be used to support multiple offload technologies. For the rest of this
document, as an application of the Offload Sockets Framework, Sockets Direct Protocol (SDP) is used as
the target protocol and InfiniBand as the target transport. However, other transport technologies (such as
TCP Offload Engines - TOE) and protocols (such as iSCSI) can easily make use of the offload sockets
framework.

The Sockets Direct Protocol (SDP) is an InfiniBand specific Protocol defined by the Software Working
Group (SWG) of the InfiniBand Trade Association (IBTA). It defines a standard wire protocol over IBA
fabric to support user-mode stream sockets-compatible (SOCK_STREAM) networking over IBA. SDP
utilizes various InfiniBand features (such as remote DMA (RDMA), memory windows, solicited events
etc.) for high-performance zero-copy data transfers. SDP is a pure wire-protocol level specification and
does not go into any socket API or implementation specifics. Work is under way to separate the SDP
wire-protocol, which is transport and O/S agnostic, from the IBA transport dependencies. This separation
will enable transports other then IBA fabrics.

While SDP facilitates direct mapping of stream connections to InfiniBand reliable connections (or virtual
circuits), IP-Over-IB (IPoIB) specifies a mapping of IP (both v4 & v6) protocols over IBA fabric and
treats the IBA fabric simply as the link layer. IPoIB specification is currently being worked on by IETF
working group and will be published as an IETF RFC. The IPoIB RFC will define the packet level format
of IP packets on the IBA fabric, and also describes an InfiniBand address resolution protocol (IBARP).
Conceptually, the IPoIB driver in Linux will look like a network driver and will plug-in underneath the IP
stack as any standard Linux network device. The IPoIB driver exposes a network device per IBA port on
the host system, and these devices could be used to assign (statically or dynamically - using protocols
such as DHCP) IP addresses. The SDP stack simply makes use of these IP assignments for endpoint
identifications.

SDP only deals with stream sockets (TCP), and if installed in a system, allow bypassing the OS resident
TCP stack for all TCP connections between any endpoints on the IBA fabric. All other socket types (such
as datagram, raw, packet etc.) are supported by the Linux IP stack and operate over the IPoIB drivers. The
IPoIB stack has no dependency on the SDP stack; however, the SDP stack depends on IPoIB drivers for
learning about local IP assignments and for address resolution.

The Linux implementation of SDP includes many interdependent pieces that are referred to as Offload
Sockets Framework (OSF). OSF enables applications to use these same standard sockets and File I/O
APIs to transparently communicate with remote endpoints/nodes across a system area network (SAN),
bypassing the kernel resident TCP/IP protocol stack. This framework will also allow applications to
bypass the resident TCP/IP protocol stack while using the default address family of AF_INET.

OSF includes an Offload Protocol Switch (OPS) module (Ipv4 internet protocol switch) that allows
integration of Offload Protocol (OP) modules along side the existing TCP/IP stack, an OP module that
supports SDP wire protocol, an Offload Transport Interface that provides a common interface to Offload
Transport (OT) module that supports InfiniBand hardware. This design document covers the specifics of
all three components.

Contents
1. Introduction .. 1-1
1.1 Purpose and Scope ... 1-1
1.2 Audience... 1-1
1.3 Acronyms and Terms ... 1-1
1.4 References.. 1-1
1.5 Conventions .. 1-2
1.6 Before You Begin .. 1-2
2. Features...Error! Bookmark not defined.
3. Design Assumptions & Rules .. 3-3
4. Design Overview.. 4-1
5. Design Details .. 5-1
5.1 Offload Protocol Switch Module ... 5-1

5.1.1 Linux Kernel Modifications .. 5-1
5.1.2 Initialization... 5-1
5.1.3 Shutdown .. 5-1
5.1.4 Socket driver modifications... 5-2
5.1.5 Offload data structures ... 5-3
5.1.6 Socket create .. 5-6
5.1.7 Socket bind .. 5-8
5.1.8 Socket listen .. 5-10
5.1.9 Socket connect ... 5-12
5.1.10 Socket accept and poll on a listen FD .. 5-14
5.1.11 Socket operations on a connected FD .. 5-15

5.2 Sockets Direct Protocol Module .. 5-16
5.2.1 Linux Kernel Modifications .. 5-16
5.2.2 Initialization... 5-16
5.2.3 Shutdown .. 5-16
5.2.4 Buffer Strategy ... 5-17
5.2.5 Connection Services .. 5-18
5.2.6 Completion Model .. 5-18
5.2.7 Data Transfer Models .. 5-18
5.2.8 Locking and Threading Model... 5-19

5.3 InfiniBand Offload Transport Module .. 5-20
5.3.1 Linux Kernel Modifications .. 5-21
5.3.2 Initialization... 5-21
5.3.3 Shutdown .. 5-21
5.3.4 Connection Services .. 5-21
5.3.5 Buffer Strategy ... 5-21
5.3.6 Data Transfer Services ... 5-22
5.3.7 Completion Services .. 5-22
5.3.8 Locking and Threading Model... 5-23

6. System Resource Usage... 6-24

6.1 Sockets Direct Protocol Module .. 6-24
6.2 InfiniBand Transport Module... 6-24
7. Internal Compatibility .. 7-1
7.1 Interaction with Other Components ... 7-1

7.1.1 Socket Driver and OPS Module Interaction ... 7-1
7.1.2 OPS and SDP Module Interaction .. 7-2
7.1.3 SDP and InfiniBand Transport Interaction ... 7-4

8. External Compatibility... 8-5
8.1 Standards ... 8-5

8.1.1 Sockets Direct Protocol Module ... 8-5
8.1.2 InfiniBand Offload Transport Module .. 8-5

9. Other Dependencies.. 9-1
9.1 Offload Protocol Switch Module .. 9-1
9.2 Sockets Direct Protocol Module .. 9-1
9.3 InfiniBand Transport Module... 9-1
10. Installation and Configuration.. 10-1
10.1 Offload Protocol Switch Module .. 10-1

10.1.1 Installation.. 10-1
10.1.2 Configuration .. 10-1

10.2 Sockets Direct Protocol Module .. 10-1
10.2.1 Installing .. 10-1
10.2.2 Configuring... 10-1

10.3 InfiniBand Transport Module... 10-1
10.3.1 Installing .. 10-1
10.3.2 Configuring... 10-1

11. Unresolved Issues... 11-1
11.1 Offload Protocol Switch Module .. 11-1
11.2 Sockets Direct Protocol Module .. 11-1
11.3 InfiniBand Transport Module... 11-1
12. Data Structures and APIs.. 12-1
12.1 Offload Protocol Switch Definitions ... 12-1
12.2 SDP Definitions ... 12-1
12.3 InfiniBand OT Definitions .. 12-1

Figures
Figure 1 High Performance Sockets in the kernel ... 4-1
Figure 2 SDP Buffer Mode Overview ... 5-17
Figure 3 InfiniBand offload Transport Service Components ... 5-20
Figure 4 Proposed Patch to Linux Socket Driver... 7-1
Figure 5 OPS and SDP interaction .. 7-3
Figure 6 SDP and InfiniBand Transport .. 7-4

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 1-1

1. Introduction

1.1 Purpose and Scope
This HLD defines the implementation of all offload components described in the “Offload Sockets
Framework and Sockets Direct Protocol Architecture Specification”, including inter-component
dependencies, and provides sufficient design detail that will satisfy the product requirements as specified.

1.2 Audience
Anyone interested in understanding this implementation of the Architecture Specification should read this
document, including:

• Software developers who are integrating the separate modules into their own software projects

• Hardware developers who need an understanding of the software behavior to optimize their designs

• Evaluation engineers who are developing tests for InfiniBand-compliant devices

• Others in similar roles who need more than a basic understanding of the software

1.3 Acronyms and Terms
OSF: Offload Sockets Framework (Software components that enables protocol offloading)

OPS: Offload Protocol Switch (A logical software module that performs protocol switching)

OT: Offload Transport (An entity that exports reliable transport semantics)

OTI: Offload Transport Interface

OP: Offload Protocol (Any upper layer protocol run over OTs. E.g. Sockets Direct Protocol)

SDP: Sockets Direct Protocol (A Socket emulation protocol specified for InfiniBand)

TOE: TCP Offload Engine (Hardware that supports offloading TCP/IP protocol from host)

IBA: InfiniBand Architecture

IPoIB: IP-over-InfiniBand (and IETF defined RFC to send IP packets on InfiniBand fabric)

1.4 References
InfiniBand

InfiniBand Architecture Specification, Version 1.0a, http://www.infinibandta.org/

IP over IB IETF draft: http://www.ietf.org/ids.by.wg/ipoib.html

InfiniBand Specification Annex A4 - Sockets Direct Protocol (SDP), Release 1.0.a

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 1-2

Sockets

 Fast Sockets reference: http://www.cs.purdue.edu/homes/yau/cs690y/fastsocket.ps

 Stream Socket on Shrimp reference: http://www.cs.princeton.edu/shrimp/Papers/canpc97SS.ps

Device Drivers
Rubini, Alessandro and Corbet, Johathan. Linux Device Drivers Book, 2nd Edition: O’reilly, June
2001. ISBN: 0-59600-008-1. http://www.xml.com/ldd/chapter/book/

1.5 Conventions
This document uses the following typographical conventions and icons:

Italic is used for book titles, manual titles, URLs, and new terms.

Bold is used for user input (in the Installation section).

Fixed width is used for code definitions, data structures, function definitions, and system
 console output. Fixed width text is always in Courier font.

 NOTE
Is used to alert you to an item of special interest.

 DESIGN ISSUE
Is used to alert you to unresolved design issues that may impact the module’s design, function, or
usage.

1.6 Before You Begin
Please note the following:

This document assumes that you are familiar with the InfiniBand Architecture Specification, which is
available from the InfiniBand Trade Association at http://www.infinibandta.org.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 2-1

2. Features
This section lists a set of features and goals for Offload Sockets Framework (OSF) support in Linux. The
items listed in this section are by no means complete and may need to be further refined before finalizing
on the best solution.

• All offload protocols/transports need to have a standard Linux network driver. This allows
network administrators to use standard tools (like ipconfig) to configure and manage the network
interfaces and assign IP addresses using static or dynamic methods.

• The offload sockets framework should work with and without kernel patches. To this effect, the
offload protocols and transports will reside under a new offload address family
(AF_INET_OFFLOAD) module. Applications will be able to create socket instances over this
new address family directly. However, for complete application transparency, an optional
minimal patch to the Linux kernel (socket driver) can be applied to allow re-direction of
AF_INET sockets to the new AF_INET_OFFLOAD address family. The AF_INET_OFFLOAD
module will work as a protocol switch and interact with the AF_INET address family. The patch
also defines a new address family called AF_INET_DIRECT for applications that want to be
strictly using the OS network stack. This kernel patch can be optional based on distributor and/or
customer requirements.

• All standard socket APIs and File I/O APIs that are supported over the OS resident network stack
should be supported over offload sockets.

• Support for native Asynchronous I/O (AIO) is being worked in Linux community. The offload
framework should utilize this to support newer protocol and transports that are natively
asynchronous. (For example, SDP stack could utilize the AIO support to support PIPELINED
mode in SDP)

• Architecture should support a layered design so as to easily support multiple offload technologies,
and not just SDP. This insures the offload sockets framework is useful for multiple offload
technologies.

• The proposed architecture should support implementations optimized for zero-copy data transfer
modes between application buffers across the connection. High performance can be achieved by
avoiding data copies and using RDMA support in modern interconnects to do zero copy transfers.
This mode is typically useful for large data transfers where the overhead of setting up RDMA is
negligible compared to the buffer copying costs.

• The proposed architecture should support implementations optimized for low latency small data
transfer operations. Use of send/receive operations incurs lower latency than RDMA operations
that needs explicit setup.

• Behavior with signals should be exactly same as with existing standard sockets.

• listen() on sockets bound to multiple local interfaces (with IPADDR_ANY) on a AF_INET
socket should listen for connections on all available IP network interfaces in the system (both
offloaded, and non-offloaded). This requires the listen() call from application with
IPADDR_ANY to be replicated across all protocol providers including the in-kernel TCP stack.

• Multiplexed I/O operations using API’s such as select() and poll() should work across
AF_INET socket file descriptors supported by different protocol/transport providers including the

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 2-2

in-kernel IP stack. This guarantees complete transparency at the socket layer irrespective of
which protocol/transport provider is bound to a socket. .

• Operations over socket connections bound to the in-kernel O/S protocol (TCP/IP) stack should be
directed to the TCP/IP stack with minimum overhead. Application bound to kernel network stack
should see negligible performance impact because of offload sockets support.

• Ability to fallback to kernel TCP/IP stack dynamically in case of operation/connection failure in
direct mapping of stream connections to offloaded protocols/transports. Connection requests for
AF_INET sockets that fail over offload stack is automatically retried with the kernel TCP/IP
stack. Once a direct mapped connection is established, it cannot be failed back to the TCP stack,
and any subsequent failures are reported to application as typical socket operation failures.

• Offload Socket framework enables sockets of type STREAMS only. Other socket types (such as
RAW, DATAGRAMS, PACKET etc.) will use only the OS network stack.

• Offload sockets framework will support offloading of stream sessions both within local IP subnet
and outside local IP subnet that needs routing. Offload protocols/transports will have the ability to
specify if they do self-routing or need routing assistance. Ability to offload stream sessions to
remote IP subnet will be useful for TOE vendors in general and for IBA edge router vendors who
map SDP sessions on IBA fabric to TCP sessions outside fabric. For protocols/transports that do
self-routing, the offload sockets framework simply forwards the requests to them. For
protocols/transports that need routing support (such as SDP), the framework utilizes the OS route
tables and applies its configurable policies before forwarding requests to offload transports. This
enables the use of O/S managed route tables to configure both offload and non-offload stacks.

• Since the socket API extensions defined by the Interconnect Software Consortium (ICSC) in the
open group is work-in-progress at this time, the offload sockets framework will not attempt to
address them in this phase. This could be attempted at a later phase.

• Offload sockets framework should not affect any existing Linux application designs that uses
standard OS abstractions and features (such as fork(), exec(), dup(), clone(),
etc.). Transparency to applications should be maintained.

• Offload sockets framework should support both user-mode and kernel-mode socket clients and
maintain the existing socket semantics for existing user mode or kernel mode clients.

• The offload sockets framework currently deals with only IPv4 address family. Even though the
same offload concepts can be equally applied to offload IPv6 family, it is deferred for later stages
of the project.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 3-3

3. Design Assumptions & Rules

Design is based on Linux 2.4.x kernel feature set. Kernel modifications will be limited as much as
possible and will be isolated with compile time switches. Asynchronous I/O kernel support that is
currently under development in the Linux community will be monitored and will be supported as part of
this design when it becomes available. Both IA32 and IA64 environments will be supported. This project
is specific for IPv4 address family but will design with future IPv6 in mind.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 4-1

4. Design Overview
The Offload Sockets Framework architecture implements high-performance socket support in the kernel
by providing a new Offload Protocol Switch (OPS) via a new address family (AF_INET_OFFLOAD)
module. This new address family module will support dynamic binding of offload protocols and
transports under the offload address family. The offload protocols will register with the offload family
and the transport modules will register with the offload protocol modules. The offload sockets
architecture is shown in Figure 1.

U

Legacy user-mode
socket application

Glibc
User

Kernel

Socket Layer
Virtual

File
System
(VFS)

Address Family AF_INET_OFFLOAD
(Offload Protocol Switch)

Sockets Direct
Protocol
Module

IP

UDP TCP

ARPA Stack TOE
Protocol
Module

Network Link Level Device Interface

ARP IBARP

TOE
Hardware

HCA Driver (Verbs)

InfiniBand Host Channel Adapter

InfiniBand Access Layer

Inet
Neighbor

Table

IPoIB Link
Driver

InfiniBand
Transport
Module

Transport Interface

Address Family AF_INET

Socket Interface

Hardware

Existing OS Components

New OS Components

Other new Components

IBA specific Components

Hardware

Existing OS Components

New OS Components

Other new Components

IBA specific Components

Figure 1 High Performance Sockets in the kernel

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 4-2

There are multiple major components to this, such as the Offload Protocol Switch (OPS) module, the SDP
offload protocol (OP) module (which include the socket and transport Interface), and the InfiniBand
offload transport (OT) module.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-1

5. Design Details

5.1 Offload Protocol Switch Module
The Offload Protocol Switch (OPS) module exposes a new address family (AF_INET_OFFLOAD) and
preserves the socket operation semantics with the kernel socket driver at the top. At the bottom it provides
a new offload protocol structure and interface for offload protocols. These offload protocols will register
with the AF_INET_OFFLOAD address family during init ialization using an exported registration call.

The OPS module is logically a thin veneer between the socket driver and the INET offload protocols.
OPS internal interfaces will be defined to provide routing information for the offload protocol modules
and transport interfaces. All external interfaces to AF_INET_OFFLOAD are defined by the Linux socket
calls in include/linux/net.h and include/linux/sock.h.

This module is capable of switching socket traffic across multiple offload protocol modules underneath
via supplied protocol address information. The module will also be capable of failing back to standard
AF_INET stack if failures occur during connection initiation over a offload protocol stack. This switching
to the standard stack requires no changes to the AF_INET stack.

5.1.1 Linux Kernel Modifications
The OPS module will be coded as a new Linux AF_INET_OFFLOAD address family. This requires new
definitions, AF_INET_OFFLOAD and AF_INET_DIRECT, in the kernel
linux/include/linux/in.h include file.

5.1.2 Initialization
The OPS kernel module will be demand loaded during system initialization. The OPS module will have a
dependency on the standard Linux socket driver. Actual OPS initialization is performed in accordance
with the standard Linux kernel module load procedure; the ‘init_module()’ function is called once
the OPS module has been successfully loaded into the kernel. See section 7.1 for OPS initialization
process and interaction with the offload protocol modules.

5.1.3 Shutdown
OPS shutdown can be initiated in one of two ways:

• During normal system shutdown procedures.

• The OPS module is forcibly removed using the Linux system administration command ‘rmmod’
(remove module).

With either method, the OPS module unload function ‘cleanup_module()’ is called per the standard
Linux kernel module unload procedure. The OPS ‘cleanup_module()’ function will notify the
protocol modules of the pending OPS module shutdown. It is expected that all offload protocol modules
will shutdown by releasing allocated system resources, halting and unloading. See section 7.1 for OPS
shutdown process and interaction with offload protocol modules.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-2

5.1.4 Socket driver modifications
This section describes the Linux kernel patch envisioned to support the offload protocol switch (OPS).
The OPS is packaged as a separate address family (AF_INET_OFFLOAD) module. This allows OPS to
be used without any Linux kernel patches, as long as applications explicitly specified the
AF_INET_OFFLOAD address family during socket creation. However, this solution is not suitable for
applications that need binary/legacy compatibility (uses only AF_INET family sockets) and flexibility to
run over offloaded or non-offloaded stacks without modifications. A minor Linux socket driver patch
achieves the binary backward compatibility of applications.

The current Linux socket driver address family switching logic is shown below first, followed by the
patched socket driver logic. With the socket driver patch, whenever a AF_INET socket is created by an

application, if it is of type SOCK_STREAM and if the OPS module is loaded and registered with the
socket driver, the socket creation calls are forwarded to the OPS module (or AF_INET_OFFLOAD)
family. The patch also exposes as new address family called AF_INET_DIRECT if specific applications
wanted to specify during socket creation not to attempt offloading them. Section 5.1.6 explains another
reason to expose the AF_INET_DIRECT address family to avoid endless loop in the socket driver.

t e x t

text

t e x t

text

text

Connect Cal lback()
L is ten Ca l lback()
Event Cal lback()

destruct()

text

text
text

T y p e

F lag

Inode

Fasync l i s t

F i le

Proto_ops

State

Sock

rcv_sadd r

d a d d r

dport

bound dev i f

l oca l_por t

S ta te

Spor t

family

refcount

lock

s h u t d o w n

rcvbuf

s leep

recv queue
wr i te_queue

Saddr

SndBuf

Er ro r Queue

TP In fo

Prot

Loca l Route

type

R c v L o W a t

Pro tooco l

S n d T i m e o u t

Rcv T imeou t

Pro toco l Pr iva te
Data

User Da ta

Socke t

Cal lbacks

A F _ I N E T _ O F F L O A D
off load_release()
of f load_bind()
of f load_connect ()
of f load_socketpair ()
o f f load_accept()
o f f l oad_ge tname()
of f load_pol l ()
o f f load_ioct l ()
o f f load_ l is ten()
of f load_shutdown()
of f load_setsockopt()
o f f load_getsockop t ()
o f f load_sendmsg()
o f f load_recvmsg()
o f f load_mmap()
o f f load_sendpage()

Or ig ina l Socket

socket and sock st ructures (wi th of f load stack)

Struct Sock

O f f l o a d p r o t o _ o p s

paren t sock
org_socke t

na t ive_socket

l o c k

p a r e n t _ s o c k
prot

s ta te

Pr ivate Data

C a l l b a c k s

sdp_in i t ()
sdp_c lose()
sdp_connec t ()
sdp_d isconnec t ()
sdp_accept ()
sdp_ioct l ()
sdp_des t roy ()
sdp_shu tdown()
sdp_se tsockop t ()
sdp_getsockopt ()
sdp_sendmsg ()
sdp_recvmsg()
sdp_bind()
sdp_back log_rcv ()
sdp_hash ()
sdp_unhash ()
sdp_get_por t ()
sdp_name [32]
sdp_sta ts [NR_CPUS]

Next

Of f load
Protocol 's

Pr ivate Data
(Transpor t ops)

 next o f f load_prot_t

o f f load_sock_t

of f load_prot_ops_t

Pr ivate Data

off load_l ist

accep t_queue

accept_ lock

t e x t

Type

Flag

Inode

Fasync l ist

File

P ro to_ops

Sta te

S o c k

Nat ive Socket

A F _ I N E T
s t r e a m s

struct
sock

A F _ I N E T
s t r e a m s

pro to_ops

off load_prot_t

t e x t

off load_register_protosw()

Next

t y p e
pro toco l

o p s

prot

addr_list

next registered
off load protocol

socket inter face

protocol inter face

protocol 's
l ink addresses

AF_INET

I P P R O T O _ S D P

socket .c

AF_ INET_OFFLOAD

of f load_pro tosw_t

s leep

Of f load Transpor t

text

event_reg is te r ()
event_dereg is te r ()
c rea te_ t i ()
destroy_ti()
debug_svc ()
c rea te_endpo in t ()
des t roy_endpo in t ()
c rea te_pd()
des t roy_pd ()
c rea te_cq ()
po l l_cq()
r e a r m _ c q ()
destroy_cq()
connec t ()
accep t ()
re ject ()
l i s ten()
d i sconnec t ()
r eg_v i r t _mem()
r e g _ p h y s _ m e m ()
dereg_mem()
res_poo l_c rea te ()
res_poo l_des t roy ()
res_poo l_ge t ()
res_poo l_pu t ()
m s g _ s e n d ()
msg_recv ()
r dma_ read ()
rdma_wri te()
a tom ic_op ()
io_c t l ()

t i _ops_t

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-3

5.1.5 Offload data structures

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-4

text

text

text

text

text

Connect Callback()
Listen Callback()
Event Callback()

destruct()

text

text
text

Type

Flag

Inode

Fasync list

File

Proto_ops

State

Sock

rcv_saddr

daddr

dport

bound dev if

local_port

State

Sport

family

refcount

lock

shutdown

rcvbuf

sleep

recv queue
write_queue

Saddr

SndBuf

Error Queue

TP Info

Prot

Local Route

type

Rcv Lo Wat

Protoocol

Snd Timeout

Rcv Timeout

Protocol Private
Data

User Data

Socket

Callbacks

AF_INET_OFFLOAD
offload_release()
offload_bind()
offload_connect()
offload_socketpair()
offload_accept()
offload_getname()
offload_poll()
offload_ioctl()
offload_listen()
offload_shutdown()
offload_setsockopt()
offload_getsockopt()
offload_sendmsg()
offload_recvmsg()
offload_mmap()
offload_sendpage()

Original Socket

Struct Sock

Offload proto_ops

parent sock
org_socket

native_socket

lock

parent_sock
prot

state

Private Data
Callbacks

sdp_init()
sdp_close()
sdp_connect()
sdp_disconnect()
sdp_accept()
sdp_ioctl()
sdp_destroy()
sdp_shutdown()
sdp_setsockopt()
sdp_getsockopt()
sdp_sendmsg()
sdp_recvmsg()
sdp_bind()
sdp_backlog_rcv()
sdp_hash()
sdp_unhash()
sdp_get_port()
sdp_name[32]
sdp_stats[NR_CPUS]

Next

Offload
Protocol's

Private Data
(Transport ops)

 next offload_prot_t

offload_sock_t

offload_prot_ops_t

Private Data

offload_list
accept_queue

accept_lock

text

Type

Flag

Inode

Fasync list

File

Proto_ops

State

Sock

Native Socket

AF_INET
streams

struct
sock

AF_INET
streams

proto_ops

offload_prot_t

text

offload_register_protosw()

Next
type

protocol

ops
prot

addr_list

next registered
offload protocol

socket interface

protocol interface

protocol's
link addresses

AF_INET

IPPROTO_SDP

socket.c

AF_INET_OFFLOAD

offload_protosw_t

sleep

Offload Transport

text

event_register()
event_deregister()
create_ti()
destroy_ti()
debug_svc()
create_endpoint()
destroy_endpoint()
create_pd()
destroy_pd()
create_cq()
poll_cq()
rearm_cq()
destroy_cq()
connect()
accept()
reject()
listen()
disconnect()
reg_virt_mem()
reg_phys_mem()
dereg_mem()
res_pool_create()
res_pool_destroy()
res_pool_get()
res_pool_put()
msg_send()
msg_recv()
rdma_read()
rdma_write()
atomic_op()
io_ctl()

ti_ops_t

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-5

This section attempts to describe the offload data structures and how they relate with the existing Linux
socket and sock data structures. Linux networking stack utilizes the socket and sock data
structures for all socket management functions across the various layers. The socket structure is
typically created by the socket driver and the sock structure is created by the address family driver.

Typically a socket structure has a single sock pointer in it which points to the address family and protocol
specific operations on that socket. The primary reason for this is that during socket creation the address
family and protocols are well specified which allows the socket to bind itself during socket creation to a
particular protocol. However with offload socket framework, to deal with IPADDR_ANY and
IPPROTO_ANY conditions where a specific protocol or local endpoint is not specified upfront, there is
need for multiple offload protocols to be linked to the same socket until enough information comes
(during bind or connect) to bind the socket to a specific protocol. To fulfill this requirement the socket
structure is transparently modified (by adding more members to the end of the buffer pointed by the
sock member element). Thus a socket created by calling the OPS module has the socket->sock
field point to an offload_sock_t structure. The offload_sock_t structure starts with a sock
element followed by other elements. The offload_sock_t contains a offload_list which points
to a linked list of offload_prot_t structures each representing a offload protocol module registered
with the OPS. The offload_prot_t structures keep all the data and state needed by the offload
protocols and transports.

Since the sockets created by the OPS can span over multiple protocols (including the AF_INET TCP
protocol), a higher level accept queue is maintained at the offload_sock_t level. The
offload_sock_t also points to a ‘Native socket’ which points to a fully qualified socket that is
created using the same credentials as the ‘Original socket’ but over the standard Linux AF_INET address
family.

For specific details of the offload_sock_t structure, please refer the accompanying data structure
definitions in section 12.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-6

5.1.6 Socket create

AF_INET_OFFLOAD

AF_INET

IPPROTO_SDP

YES

sock_create() allocates a
socket structure and gets

inode, then calls
offload_create()

socket.cApplication

IPPROTO_TOE

sock_create() may be patched to forward
AF_INET create call. Patch will check for

sock_create call from af_inet_offload module
using AF_INET_DIRECT designation.

Call sock_create with
AF_INET family to setup

native socket

Create TCP
Sock and link to native

socket.
sock->proto = TCP

sock->tp_info = tcp_opts

org socket

native socket

native socket

Set org->ops
to AF_INET.

Assimilate into
org and

release native
socket and

inode.

org socket has
socket->file = fd

 offload protocols
registered and
Type=Streams?

 org socket == AF_INET ops

Set org->ops to
call af offload.
org->sock =

offload structure
which includes

org socket, native
socket (if

patched), and
registered
protocols.

Could release
native inode?

 org socket == AF_INET_OFFLOAD ops

AF_INET
or

AF_INET_OFFLOAD

sock_create() allocates a
socket structure and gets

inode, then calls
inet_create()

native_socket
successful?

socket.c patch applied
and protocol is

supported by AF_INET

no socket.c applied or
protocol is not

supported by AF_INET

NO

YES

create matching
offload sock structure

and setup protocol, then
call sock->prot->init

protocol init function

offload
protocol init
sucessful?

NO

Native
socket?

YES

NO

YES

 org socket == offload protocol ops

IP_PROTO_ANY?

NO

YES

Native
socket?NO

YES

Set org->ops
to call directly

to offload
protocol.

Release native
socket and

inode.

NO

ERROR

init every registered
offload protocols

all init's
failed?

NO

YES

AF_INET_DIRECT

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-7

This section illustrates the socket creation process using the offload sockets framework. The socket driver
sock_create() function creates the ‘Original socket’ structure and forwards the call to the OPS
module by calling its offload_create() entry point in the proto_ops table of the socket. The
OPS module calls back the socket driver’s sock_create() function with the AF_INET_DIRECT
address family to create a ‘Native socket’ over the AF_INET stack. If the native socket creation was
successful, it implies that the socket driver patch is running and the application specified protocol is
something supported by the OS AF_INET stack.

OPS checks if the application specified protocol in the socket() calls is a offload protocol registered,
and also if the type of socket specified by application is STREAM (since OPS only offloads STREAM
sockets). If a match is not found, the specified protocol is not offload able and the native socket is copied
to the original socket to fulfill the socket creation request. If the native socket was not available , then the
socket creation call is failed and returned. If a match is found, OPS checks if the protocol specified is a
wildcard (IP_PROTO_ANY). If it is a wildcard protocol, then the socket context initialization function
needs to be called on all the registered offload protocol modules one after the other. If a specific protocol
is specified by application (like say IPPROTO_SDP or IPPROTO_TCP), then the specific protocol
module’s socket initialization function is called. If the protocol module initialization fails, then the OPS
attempts a fail back to the AF_INET protocol stack if a native socket was available.

Based on the above conditions, the offload_create() call from the socket driver could return with
either original_socket->proto_ops pointing to protocol operation call table of OPS, or protocol
operations of a specific offload protocol (such as SDP), or protocol operations of AF_INET, or a NULL
indicating error. In any case, this is completely transparent to the socket driver and the application above
it.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-8

5.1.7 Socket bind

Yes

AF_INET_OFFLOAD

AF_INET

IPPROTO_SDP

socket.c

IPPROTO_TOEsock_bind() forwards call to
AF_INET_OFFLOAD module

socket->ops =
AF_INET_OFFLOAD

Application
bind()

NOTE: AF offload would only
be called if

offload_sock_create() resulted
in both offload and native

sockets being created or if the
bound offload protocol

specifies
AF_INET_OFFLOAD entry

points in it's proto_ops.

socket->sock = af_offload_sock

call
native->proto_ops->bind

with sockaddr

inet_bind() will get/hash
port with TCP stackprotocol

registered?

TOE Bind
on TCP port

SDP Bind
on TCP port

For each offload
protocol

registered

Return to application

YES

TOE Bind on TCP
port

offload->prot->bind

ERROR

Native
Socket?

native bind
success?

IP_PROTO_ANY

offload bind
success?

YES

YES

NO

NO

NO

NO

call specific
offload->prot->bind

with sockaddr

NO

Yes

use native port
for offload

binds

1st offload
port used for

all binds

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-9

This section illustrates the program flow in the OPS for a socket bind() operation. Since the socket
creation request was forwarded to the OPS module by the socket driver (as described in the previous
section), the socket->proto_ops at the time of bind points to the function call table of the
AF_INET_OFFLOAD address family as exposed by the OPS driver. The socket driver simply forwards
the bind() operation to the AF_INET_OFFLOAD address families bind() entry point as exposed in
the socket->proto_ops member.

Once the OPS module’s bind entry point gets called by the socket driver, it first checks for if the protocol
specified on the socket is a wildcard (IP_PROTO_ANY) protocol. If it is not a wildcard protocol, the bind
entry point of the appropriate offload protocol module that supports the specified protocol is called. If the
protocol modules bind fails, an error is returned.

If a wildcard protocol was specified during the ‘Original socket’ creation (as explained in previous
section), the OPS attempts to make sure the same bind port is used for all the protocol modules. If a bind
port (well known port) is specified by the application, the specified port value is used on binds to all the
registered protocol modules. If a dynamic port is specified by the application (port = 0), then a dynamic
bind is done over the first offload protocol, and the port value returned is used to do the binds on rest of
the protocols. Also, in case of wildcard socket binds, the ‘Original socket’ is first checked to see if a
native socket handle (bound over the AF_INET stack) exists within the ‘Original socket’. If a native
socket is not present, the bind is first attempted over the ‘Native socket’ (causing a TCP bind). If the
‘Native socket’ bind returns in error, the bind fails immediately. If the ‘Native bind’ succeeds, then the
binds on all other offload protocol modules are attempted. This guarantees that for dynamic ports, the port
value returned by TCP can be used for binds on all other protocols, thereby unifying the port space for the
application.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-10

5.1.8 Socket listen

Yes

AF_INET_OFFLOAD

AF_INET

IPPROTO_SDP

socket.c

IPPROTO_TOEsock_listen() forwards call to
AF_INET_OFFLOAD module

socket->ops =
AF_INET_OFFLOAD

Application
listen()

NOTE: AF offload would only
be called if

offload_sock_create() resulted
in both offload and native

sockets being created or if the
bound offload protocol

specifies
AF_INET_OFFLOAD entry

points in it's proto_ops.

socket->sock = af_offload_sock

call
native->proto_ops->listen

inet_listen() will call TCP
streams stack

protocol
registered?

TOE listenSDP listen

For each offload
protocol

registered

Return to application

YES

TOE Bind on TCP
port

offload->prot->listen

ERROR

Native
Socket?

native listen
success?

IP_PROTO_ANY

offload listen
success?

YES

YES

NO

NO

NO

NO

call specific
offload->prot->listen

NO

Yes

all
listen's
failed?

YES

NO

Need to get "syn recv"
indication from native stack

without mods to stack.
OPTIONS:

1. One Thread per socket,
Blocks on native FD. CPU

utilization ok but extra thread per
socket.

2. One thread for all native
sockets calls tcp_poll with no

timeout. CPU utilization
problem? Not sure if there is a
time passed with poll_table?
3. One thread for all native

sockets calls tcp_accept with
NON-BLOCKING? CPU

utilization problem?
4. Could call tcp_poll with a file
desc and wait object created by
OPS which will span all sockets?
Wake up a walk all sockets with

accept.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-11

OPS handles socket listen very similar to how bind is handled. Listens on sockets that are bound to a
specific protocol are forwarded to the protocol module handing the specific protocol. For wildcard
protocol bound sockets, the listens are posted on all the available protocol modules bound to the socket,
including TCP if a ‘Native socket’ is attached to the ‘Original socket’. Since TCP interface uses blocking
semantics for operations such as accept(), poll() etc., the OPS module utilizes a worker thread to process
these operations. Also, a global accept queue is constructed at the OPS module to process incoming
connection requests through any of the protocol modules, including TCP. The accept/poll section
describes details on these operations.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-12

5.1.9 Socket connect

NO

AF_INET_OFFLOAD

AF_INET

IPPROTO_SDP

socket.c

IPPROTO_TOE
sock_connect() forwards call to

AF_INET_OFFLOAD module

socket->ops = AF_INET_OFFLOAD

Application
connect()

NOTE: AF offload would only
be called if

offload_sock_create() resulted
in both offload and native

sockets being created or if the
bound offload protocol

specifies
AF_INET_OFFLOAD entry

points in it's proto_ops.

socket->sock = af_offload_sock

call
native->proto_ops->connect

inet_connect() will call TCP
streams stack

Return to application

YES

TOE Bind on TCP portoffload->prot->connect

ERROR

Native
Socket?

native
connect

success?

offload route
possible?

offload
connect

success?

YES

NO

Yes

NO

Call prot connect with 1st
hop sockaddr = NULL

Is protocol
self-routing?

YES

Determince 1st hop
based on routing info.

Call prot connect with 1st
hop sockaddr = haddr

YES

NONO

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-13

This section illustrates the program flow in the OPS for a socket connect() operation. Since the socket
creation request was forwarded to the OPS module by the socket driver simply forwards the connect()
operation to the AF_INET_OFFLOAD address families connect() entry point as exposed in the
socket->proto_ops member.

Once the OPS module’s connect entry point gets called by the socket driver, it checks it’s current routing
table and based on the sockaddr passed with the connect, routes to the proper offload protocol. If no
routes are found via registered offload protocol providers then the OPS module will forward the connect
request to the native stack. Otherwise, it will check to see if the protocol provider needs first hop
information and will pass the appropriate 1st hop and final destination address information via the
protocols connect entry point. Any errors returned by the offload protocol stack or by the native protocol
stack will be returned to the application.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-14

5.1.10 Socket accept and poll on a listen FD

AF_INET_OFFLOAD (OPS)

AF_INET

IPPROTO_SDP

socket.c

IPPROTO_TOE

Application
accept() or poll()

accept calls
offload_accept()

select or poll calls
offload_poll()

org socket

org->sock = offload
structure which contains
org and native sockets.

(also contains list of
registered AP's)

org->sock = offload
structure which contains
org and native sockets.

(also contains list of
registered AP's)

any requests
in accept
queue?

suspend user
process

any requests
in accept
queue?

NO
NO

return
proper POLL

bits
Return to application

YES

accept queue

connect request
indication from SDP

connect request
indication from TOE

(listen option 4)
wake accept worker thread
(AWT) via offload FD and

wait_queue with listen
socket and accept queue

reference

syn packet
indication fromTCP

get socket reference and
address info, put accept

queue and wake app process
if necessay

call tcp hash to
hash remote

address pair and
wake up listen

Pull pending
connect

request off the
queue

YES

native?
YES

NO

Create a new
socket offload
structure and

Call proper AP

TOE
accept()SDP

 accept()

call
inet_accept

with new
socket

new->sock =
offload structure
which includes

new socket
reference and the

AP proto_ops

new socket

NOTE: AF offload would only be
called if offload_sock_create()

resulted in both offload and
native sockets being created

(listen option 4)
native->proto_ops->poll

to setup accept wait_queue

connect request callback

(listen opt 4)
wake AWT and
schedule new
socket wait

native->ops-
>poll()

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-15

This section illustrates the program flow in the OPS for a socket accept()and poll() operation.
Since the socket creation request was forwarded to the OPS module by the socket driver, the socket-
>proto_ops simply forwards the accept()or poll() operation to the AF_INET_OFFLOAD
address families accept()or poll() member respectively.

The OPS poll entry point is called as a result of either a select or poll at the application level. The kernel
do_select is called to handle any timeout or multiple listen FD’s specified by the application. This
diagram covers the details of listen FD’s only. The OPS will check for listen state and for any pending
requests on the accept queue. If there are accept requests pending, it will return the proper POLL bits to
the application to indicate the pending connection. Otherwise, it will wake up the Accept Working Thread
(AWT) to setup the native accept wait_queue to process native connections (SYN). Any errors returned
by the native protocol stack will be returned to the application.

The OPS accept entry point is called as a result of a application accept on a listen FD after a poll or select
has indicated a connection request event on a previous listen. The OPS will check for listen state and for
any pending requests on the accept queue. If there are accept requests pending, it will pull the accept
information off of the accept queue. Otherwise, it will wake up the Accept Working Thread (AWT) to
setup the native accept wait_queue and will suspend the user process.

If the accept request is a native request, then the native accept is called with the new socket. Otherwise, if
the accept request is an offload protocol request, the OPS will create a new socket offload structure and
call the appropriate offload protocol accept. Once the offload protocol accept() returns, the OPS will
setup the proto_ops and the new socket reference and return to the application. Any errors returned by
the offload protocol stack or by the native protocol stack will be returned to the application. .

5.1.11 Socket operations on a connected FD
Once a socket transitions into a connected state, it is also bound to a specific protocol that fulfilled the
connection setup. Once a socket is connected the operations on this socket are forwarded blindly to the
protocol module it is bound to through the proto operations exposed by the protocol modules. The OPS
module could also try to remove itself from the function call path of a connected socket by pointing the
proto_ops member of the socket structure to directly point to the offload_proto_ops_t
structure of the bound protocol underneath at the time of connection setup completion. Any data transfer
operations (send/recv/poll/select) are handed exactly same as how Linux stack handles them currently. If
the socket is connected through the Linux AF_INET TCP stack, the OPS module makes the original
socket resemble a native socket with the proto_ops structures pointing to the AF_INET/TCP protocol
operation call tables. With this model, the socket driver and application above it always sees a transparent
interface.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-16

5.2 Sockets Direct Protocol Module
The Linux implementation of SDP includes many interdependent components that are referred to as
Offload Sockets Framework (OSF). This framework will allow applications to bypass the resident
TCP/IP protocol stack while using the default address family of AF_INET.

Offload Sockets Framework includes an Offload Protocol Switch (OPS) module (Ipv4 internet protocol
switch) that allows integration of Offload Protocol (OP) modules along side the existing TCP/IP stack, an
OP module that supports SDP on the wire, and an InfiniBand Offload Transport (OT) that provides the
transport abstraction to an InfiniBand fabric.

There are 3 major internal components of the SDP module, socket interface layer at the top, the SDP state
machine in the middle, and the transport interface at the bottom. The SDP module exposes the standard
proto_ops call interface at top. In addition to the standard proto_ops call interface at the top, SDP
also supports the new extended proto operations, offload_ops, as defined by the OPS interface. These
new interfaces include a new connect call that supports a first hop IP address and a new sock structure
that defines specific offload protocol and transport details. This section covers the design details of the
Socket Direct Protocol Module.

5.2.1 Linux Kernel Modifications
The SDP module will be coded as a new Linux AF_INET network protocol type. This requires a new
definition, IPPROTO_SDP, in the kernel linux/include/linux/in.h include file. In addition to the new SDP
protocol type, the sock structure in linux/include/net/sock.h will need to be modified to include a new
sdp_opt structure qualified with “#if defined (CONFIG_SDP)”

5.2.2 Initialization
The SDP kernel module will be demand loaded after the initialization of OPS, normally during system
initialization. The SDP module will have a dependency on OPS. Offload transports will have a
dependency on SDP.

Actual SDP initialization is performed in accordance with the standard Linux kernel module load
procedure; the ‘init_module()’ function is called once the SDP module has been successfully loaded
into the kernel. See section 7.1 for SDP initialization process and interaction with the OPS and the OT.

5.2.3 Shutdown
SDP shutdown can be initiated in one of two ways:

• During normal system shutdown procedures.

• The SDP module is forcibly removed using the Linux system administration command ‘rmmod’
(remove module).

With either method, the SDP module unload function “cleanup_module()” is called per the standard
Linux kernel module unload procedure.

The SDP “cleanup_module()” function will notify the OPS and the offload transports of the pending
SDP module shutdown. It is expected that SDP will shutdown by releasing allocated system resources,

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-17

halting and unloading itself. This will result in a cleanup of all INET addresses in use by the OPSI on
behalf of the SDP module. See section 7.1 for SDP shutdown process and interaction with the OPS and
the OTI.

5.2.4 Buffer Strategy
SDP supports several data transfer mechanisms designed to take advantage of reliable transports with
RDMA capabilities. Four types of transfer modes are supported with SDP; buffered, combined, write zero
copy, and read zero copy. Depending on the application workload and buffer availability, SDP will use
the most optimal mode for transferring the data.

Small transfers, determined by a data copy size threshold, will use buffered mode to transfer the data.
This mode requires a pre-allocated buffer pool that the application data is copied to/from during each data
transfer. This buffer pool is provided by the offload transports but will be sized and managed by SDP on a
per connection basis. The transport must provide a mechanism to created/destroy these pools with buffer
size, count, and data segments. A free pool queue will be provided by the transport, with a low overhead
get/put interface, to retrieve and replace buffer resources. The transport must also provide in terfaces, to
send buffers, to pre-post receive buffers, and to poll or get callback indications when buffer transfers are
complete.

Large transfers, greater then the data copy size threshold, that have available read and write buffers on
each end of the connection will use the zero copy read or write mechanism to transfer the data. This zero
copy data transfer mode requires a mechanism to initialize RDMA operations with the transport. The
transport must provide a mechanism to pre-allocate RDMA transport descriptors that can be used for the
data operation to avoid unnecessary overhead in the transfer mode. The transport must also provide
interfaces to register and un-register user memory, to initiate RDMA reads/writes, and to poll or get
callback indications when transfers are complete.

Figure 2 illustrates the buffered mode and the zero copy paths using a reliable transport:

Buffer
Copy
Path

Reliable
Transport
Interface

Reliable
Transport
InterfaceReliable

Connection

User
Buffer

User
Buffer

Zero
Copy
Path

Zero
Copy
Path

Buffer
Copy
Path

Private
Buffer
Pool

Private
Buffer
Pool

Private
Buffer
Pool

Private
Buffer
Pool

Private
Buffer
Pool

Private
Buffer
Pool

Private
Buffer
Pool

Private
Buffer
Pool

Figure 2 SDP Buffer Mode Overview

Refer to the Data Transfer Mechanism section in the InfiniBand annex A4 Socket Direct Protocol
Specification for more details.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-18

5.2.5 Connection Services
Sockets Direct wire protocol defines a standard message protocol that includes a Base Socket Direct
Header (BSDH) with all messages. Each message is identified with a Message Identifier (MID) and in
addition to BSDH may contain specific message information and actual upper level protocol (ULP) data.
For connection establishment the Hello Message (HM) and HelloAck Message are used and to disconnect
or abort the DisConn and the AbortConn messages are used. Refer to the SDP Message Formats section
in the InfiniBand annex A4 Socket Direct Protocol Specification for more details.

The SDP module is totally transport independent and expects the transport to provide the address
resolution and port mapping based on its underlying link. The offload transport interface will provide a
mechanism to resolve the endpoints based on a standard IP address/port pairs and return an opaque
endpoint data handle back to SDP that can be used for either the listen or connect request.

The transport is also required to provide a mechanism to pass private data (up to 76 bytes) with a
connection, listen, accept, and reject calls. These private data buffers are used by SDP to setup connection
attributes as defined by the Hello Message (HM) and the HelloAck Message (HAH). The connection
reject codes (consumer reject) are exported to the SDP module as specified by the InfiniBand annex A4
Socket Direct Protocol Specification.

InfiniBand’s IP over IB mapping and CM REQ does not provide enough granularity to support a listen
that multiplexes based on a link address, network address, and a port. It only provides a mechanism to
listen on the link address (GID) and the service identifier (mapped IP port). Therefore, the transport
interface must supply additional multiplexing fields in the listen call that includes an offset to private data
and a size of private data so that SDP can provide the local IP address as the additional multiplexing field.
Without this feature, SDP would be required to provide additional multiplexing on top of the listen if
there was a GID/SID conflict due to IP aliasing features of an O/S.

5.2.6 Completion Model

The transport provides a completion queue model that allows the SDP module to either poll for
completions or to get an indication of a completion via a callback. It is assumed that the underlying
transport and link interface provides the best possible de-serialization and scale -up with the completion
callbacks based on the hardware characteristics and workloads running on the system. The SDP module
will be capable of running at any priority including interrupt level.

SDP will initialize the CQ and size it according to the maximum work requests expected for sends,
receives, and RDMA transfers based on the initial socket creation and socket option settings. The SDP
module will setup one CQ for send messages and RDMA requests, and another one for receive messages.
This architecture allows for development of independent SDP send and receive completion engines that
can work independently.

5.2.7 Data Transfer Models
SDP defines four data transfer mechanisms:

• Bcopy – transfer of user data from send buffers into receive private buffers.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-19

• Read Zcopy – transfer of user data through RDMA reads, preferably directly to and from user
buffers.

• Write Zcopy – transfer of user data through RDMA writes, preferably directly to and from user
buffers.

• Transaction – an optimized user data transfer for transactions that piggy-backs user data transfers
using private buffers on the top of the Write Zcopy mechanism used to transfer the data on the
opposite half-connection.

The SDP module will be compliant with all data transfer modes as specified by the InfiniBand annex A4
Socket Direct Protocol Specification.

 NOTE
All models will be supported at the final release of this product, however each mode will be
implemented in phases in the following order: Bcopy, Read Zcopy and Write Zcopy, and finally
transaction. Since Bcopy is the only required model to be compliant with the specification all
phases will be compliant with SDP protocol.

5.2.8 Locking and Threading Model
The SDP thread safe design is based on the premise that the SDP module will be driven by external
events and thus will not require any dedicated threads of control, which are exclusive to the SDP module.
External agents, such as an user application thread, an OPSI initialization thread, or system event
notification will make calls into the SDP module thus providing threads of control. Access to internal
SDP data structures will be serialized by the use of simple locks.

The offload transport may have dedicated threads of control that can invoke up-calls into SDP module.
One such case would be the invocation of an IO completion callback routine. The SDP module is
designed to limit the amount of processing in the IO completion callback thread if the transport is calling
in a high-priority thread context such as interrupt level. All up-calls will be checked for priority levels
and processed accordingly.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-20

5.3 InfiniBand Offload Transport Module

The InfiniBand Offload Transport is designed to abstract reliable hardware transport interface specifics in
such a fashion that an offload protocol (OP) module, Sockets Direct Protocol (SDP) in our case, can
interface to a consistent transport API over a potentially wide range of differing reliable hardware
transports. The InfiniBand Transport module will support any hardware interface that utilizes the
InfiniBand Access Layer (IAL).

The InfiniBand OT has at least one Linux network link device associated with it, represented by the Linux
struct netdevice. Once the InfiniBand OT registers with the SDP module, it will provide link
device configuration events to the SDP module. In this manner, Internet link device configuration changes
(IP address assignment, address change or device shutdown) and IP network route change events will be
propagated to the offload SDP agent.

InfiniBand OT service’s defines the Internet Protocol Address format as its base level addressing
mechanism. Offload protocol modules establish connections or send/receive datagrams based on IPv4 or
IPv6 addressing formats. Initially, only the IPv4 address format will be supported. Offload transports are
expected to convert an IP address into the transport/link specific address format required for transmission
or reception. The InfiniBand OT module is designed to abstract the InfiniBand transport/link into
common OT definitions.

The InfiniBand OT module provides four groups of basic services. Each service includes a collection of
OT components that provide an implementation instance of that service. That is to say, each component
has a well-defined offload transport service interface with a behavior implemented by an offload
transport.

Figure 3 shows the OTI components that this specification defines.

Connection Services

Connection

InfiniBand Offload Transport Services

Completion
Managers

Direct Processing
Manager

Polling Manager

Data Transfer Services

Message and
RDMA services Datagram Service

Message Pool

Resource Pools

RDMA Pool

Datagram Pool

Figure 3 InfiniBand offload Transport Service Components

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-21

The transport architecture is flexible enough to allow the creation of additional components for each type
of service within the transport. However, the interfaces between internal services and components not
shown in Figure 3 are outside the scope of this document.

5.3.1 Linux Kernel Modifications
The InfiniBand OT is designed as a loadable kernel module. Modifications to provide notifications of
route changes via events will require changes to the Linux kernel.

5.3.2 Initialization
The InfiniBand OT kernel module will be demand loaded after the discovery of offload capable hardware,
normally during system initialization. Actual InfiniBand OT initialization is performed in accordance
with the standard Linux kernel module load procedure; the ‘init_module()’ function is called once the
InfiniBand OT module has been successfully loaded into the kernel.

5.3.3 Shutdown
The InfiniBand OT shutdown can be initiated in one of two ways:

• A network link device, which the InfiniBand OT is monitoring, is shutdown via normal system
shutdown procedures. System shutdown results in a link device event notification (system
shutdown) being delivered to the InfiniBand OT.

• The InfiniBand OT module is forcibly removed using the Linux system administration command
‘rmmod’ (remove module).

With either method, the InfiniBand OT module unload function ‘cleanup_module()’ is called per the
standard Linux kernel module unload procedure.

The InfiniBand OT ‘cleanup_module()’ function will notify the SDP module. The SDP module will
notify the OPSI (Offload Protocol Switching Interface) of the interface shutdown, which results in the
shutdown of INET addresses in use by the OPSI.

5.3.4 Connection Services
Connection services abstract and simplify the details of using a specific connection protocol. A
connection service is responsible for creating data transfer service’s, authenticating their data transfers
with remote endpoints, and presenting configured data transfer services to the user. The library provides
a single channel connection service that is used to establish point-to-point communication over the
transport link medium to a remote transport agent or endpoint.

Communication endpoints are identified by Internet Protocol addresses. Initially only IPv4 (Internet
Protocol Version 4) format addresses are supported, with provisions to support IPv6 into the near future.

5.3.5 Buffer Strategy
Resource pools manage the allocation and distribution of data buffers, work requests, and transfer
elements. Transfer elements are used to specify data transfer operations to the library. Work requests are
required internally by the library to perform data transfers over the fabric interconnection hardware.
There are three types of resource pools: datagram pools, message pools, and Remote Direct Memory
Access (RDMA) pools.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-22

5.3.5.1 Datagram Buffer Pool
The datagram pool administers datagram elements; queues pending requests for asynchronous operation;
and, at the user’s option, allocates and manages the distribution of data buffers used for connectionless
message-passing operations. Datagram elements are used to request data transfers using connectionless
communication and support Segmentation and Reassembly (SAR) of connectionless messages.

5.3.5.2 Message Buffer Pool
The message pool is similar to the datagram pool, but message elements are used to perform data transfers
over connected channels. The message pool administers message elements; queues pending requests for
asynchronous operation; and, at the user’s option, allocates and manages the distribution of data buffers
used for message-passing operations.

5.3.5.3 RDMA Resource Pool
The RDMA pool manages data transfer request elements and, optionally, RDMA data buffers. The data
transfer request elements are used to signal the library to perform RDMA operations over connected
channels. The RDMA pool provides asynchronous operation for requesting resources.

5.3.6 Data Transfer Services
Data transfer services are responsible for posting the following types of requests: sends, receives, RDMA
reads, and RDMA writes. These services provide work queue management, perform message-passing
flow control and manage scatter-gather data transfer requests. Connection services are used to create and
configure data transfer services.

5.3.6.1 Message and RDMA Service
A channel provides a connected communication path between two transport endpoints. Channels support
both RDMA and message-passing data transfers and may optionally provide message-level flow control.

5.3.6.2 Datagram Service
A datagram service provides connectionless communication to remote endpoints. Multiple endpoints
may be reached through a single datagram service; however, datagram services support only
connectionless message data transfers.

5.3.7 Completion Services
Completion services check for and process completed data transfer operations. Completion services are
responsible for invoking any necessary post-processing, including user callbacks, and for resuming stalled
data transfers.

5.3.7.1 Direct Processing Manager
The direct processing manager processes completions of data transfer requests within the context of the
completion callback that delivered the completion notification to the library. This provides the lowest
possible latency for processing a single completion by avoiding a thread context switch.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 5-23

5.3.7.2 Polling Manager
A polling manager is a completion service without active threads. A polling manager manages
completions across multiple data transfer services, but it relies on the user to poll for completed requests.

5.3.8 Locking and Threading Model
The InfiniBand OT thread safe design is based on the premise that it will be driven by external events and
thus will not require any dedicated threads of control. External agents, such as the SDP module, the
InfiniBand Access Layer, or system event notification will make calls into the InfiniBand OT thus
providing threads of control through the InfiniBand OT. Access to internal InfiniBand OT data structures
will be serialized by the use of simple locks.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 6-24

6. System Resource Usage

6.1 Sockets Direct Protocol Module
Memory requirements are dependent on the socket allocation size. Private buffers will be allocated based
on the socket buffer size as specified by either the default O/S setting or by the setsockopt call from the
application. Additional overhead on a per socket basis includes the struct offload_ops_t
(~128bytes).

6.2 InfiniBand Transport Module
The IB Offload Transport will consume additional memory on a per socket basis based on the connection
attributes (maximum send and receive depths). Refer to the IB HCA hardware for CQ and QP overhead.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 7-1

7. Internal Compatibility

7.1 Interaction with Other Components

7.1.1 Socket Driver and OPS Module Interaction

The Offload Protocol Switch (OPS) module provides a dynamic binding facility for offload protocols
modules. It is a loadable module that registers dynamically with the Linux socket driver (socket.c). It
exposes a new address family (AF_INET_OFFLOAD) but at the same time interacts with the AF_INET
address family so that IPPROTO_ANY traffic can be directed to both the offload protocols under
AF_INET_OFFLOAD and to the standard AF_INET protocols. Applications can also directly create
sockets on AF_INET_OFFLOAD address family and bind to any offload protocols registered with this
offload address family, without requiring any kernel patches.

In order to seamlessly support sockets created by applications with AF_INET address family a small
patch must be applied to the socket driver (socket.c) sock_create() code to direct AF_INET address traffic
to the offload address family module (AF_INET_OFFLOAD) exposed by the OPS module. The OPS
module will switch sockets appropriately based on family, protocol type, and protocol. No modifications
are needed in the AF_INET stack since the OPS module will interact with the standard AF_INET stack
via the address family socket interface. Figure 3 shows the original Linux socket driver address family
switching logic and the changes in the proposed kernel patch.

Address
Family ?

AF_INET_OFFLOAD AF_INET

Forward Call to
AF_INET

Forward Call to
AF_INET_OFFLOAD

Linux Socket Driver (socket.c)

Address
Family ?

AF_INET_OFFLOAD AF_INET_DIRECT

Forward Call to
AF_INET

Forward Call to
AF_INET_OFFLOAD

AF_INET

Patched Socket Driver (socket.c)

Protocol
Type ==

STREAM

YES

NO

AF_INET_O
FFLOAD

registered ?

YES NO

AF_INET

socket.c

AF_INET_OFFLOAD

Figure 4 Proposed Patch to Linux Socket Driver

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 7-2

7.1.2 OPS and SDP Module Interaction

Figure 5 shows the various steps involved in the OPS and offload protocol modules initialization and
operation

1. The socket.c sock_create() code is modified to forward all AF_INET sock_create calls to
AF_INET_OFFLOAD module. The AF_INET_OFFLOAD module will direct the create call
based on the offload protocols that have registered. If the create is forwarded back to the
AF_INET, the OPS will use AF_INET_DIRECT so that the sock_create() code will know to
switch the create directly to the AF_INET path thus sending all subsequent socket calls directly to
the correct family.

2. The AF_INET_OFFLOAD module, as part of its initialization, registers its address family
AF_INET_OFFLOAD to the socket layer by calling sock_register () call back to the socket layer.
All future socket calls, with address family AF_INET_OFFLOAD will be directed by the socket
layer to the OPS layer.

3. When Offload Protocol modules get loaded, the offload_register_protosw() is called to register
their entry points and capabilities like self-routing, rdma etc to the AF_INET_OFFLOAD
module.

4. When a network interface configuration changes (address assignment, address change, route
changes, etc.), the Offload protocol module which is bound to this network interface notifies the
OPS module by calling offload_notification().

5. Depending on the incoming request, the OPS module will then switch to proper protocol module.
The switching policy depends on the protocol capabilities, binding priority set by the user. The
AF_INET stack is the default stack, and if none of the offload protocol modules are loaded or if
none of the module capabilities matches the incoming request, the OPS will forward the request
to the AF_INET stack. For protocol modules that do not support self-routing, the
AF_INET_OFFLOAD driver will handle the routing issues.

Once an appropriate protocol module is chosen, it is up to the protocol stack to handle the request. For
example if SDP protocol module is chosen to service an request, then it is up to the SDP module to
establish a session with its peer, pre register buffer element and decide on mode of data transfer (Send vs.
RDMA Write for example).

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 7-3

Legacy user-mode
socket application

Glibc
User

Kernel

Socket Layer

Address Family Inet
Offload Protocol Switch

UDP

ARPA Stack
Sockets

Direct Protocol

Kernel
Initialization

1
sock_init()

3

OPS calls sock_register() to
register for address family

AF_INET_OFFLOAD

4

TCP

IP

2

OPS will switch to proper OP
based on registration info.

OPS will route for OP modules
that do not self route.

Registers protocol, type and
capabilities (self-routing, etc.)
offload_register_protosw()

5

Registers network interface
information for switching

offload_notification()

IPPROTO_SDP 5

Wildcard will fallback to
default stack after OP error

 Figure 5 OPS and SDP interaction

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 7-4

7.1.3 SDP and InfiniBand Transport Interaction

Offload Transports (OTs) implement the offload transport interface abstractions. The InfiniBand transport
is designed to be a kernel loadable module, which provides an InfiniBand hardware transport specific
implementation of the offload transport abstraction defined by the offload transport interface.

Figure 6 shows the various steps involved in the OT module initialization and operation.

1. The InfiniBand (IB) Transport module will register with the SDP module and provide the
transport operations interface and capabilities.

2. The InfiniBand Transport module obtains kernel notification services for network devices, IP
configuration, and IP routing information using the device name provided by the link driver.
When an IP configuration notification occurs for this net device the transport module will forward
the via the event notification upcall to SDP, if SDP has registered for events.

3. The SDP module, using the transport register event call, will register for address, net device, and
route changes.

4. The SDP module maintains a list of transports, with address information, and will switch to
appropriate transport based on address information during a socket bind.

Socket Direct Protocol Module

InfiniBand
Transport

Each registered OT is associated with a
link device driver for IP network address

assignment. In order to track network
device configuration changes, the OTI

registers for network device event
notifications.

register_inetaddr_notifer()
register_netdevice_notifier()

register_route_notifier()

InfiniBand Transport
registers with SDP

module
providing transport ops

entry points and
capabilities

sdp_register_tpsw()

2

1

sdp_unregister_tpsw()
is called by the

InfiniBand transport at
module unload time.

transport interfaces exported to SDP
ot_register_event, ot_unregister_event,

ot_create, ot_destroy, ot_connect,
ot_listen, ot_accept, ot_reject, ot_disc,

ot_ioctl, ot_send, ot_recv, ot_rdma_write,
ot_rdma_read, ot_reg_mem,

ot_dereg_mem, etc.

SDP maintains a linked
list of Offload Transport
structures which include

transport function
dispatch table & network

device info

Network Link Level Device
Interface

IPoIB Link
Driver

4

SDP calls transport to
register a callback for

network device events.
Upcall events include

address, device, or route
change.

3

Figure 6 SDP and InfiniBand Transport

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 8-5

8. External Compatibility

8.1 Standards

8.1.1 Sockets Direct Protocol Module
The SDP module and state machine is designed to support all compliance statements highlighted in the
InfiniBand Annex A4 Socket Direct Protocol Specification.

8.1.2 InfiniBand Offload Transport Module
The InfiniBand Transport module is designed to support the new Offload Transport Interface (OTI) at the
top and interface with the standard InfiniBand Access Layer at the bottom.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 9-1

9. Other Dependencies

9.1 Offload Protocol Switch Module

9.2 Sockets Direct Protocol Module
SDP has the following dependencies on an IB specific Offload Transport:

• Offload Transport must provide a listen interface that supports all 76 bytes of IB CM REQ private
data and will multiplex based on the IP address/port pair provided in the endpoint handle and the
specified private data. The transport shall not byte swap any of the private data. This private data will
include, in big-indian format, the SDP Hello and the HelloAck messages.

• Offload Transport must support a ”consumer reject” error code during connection callbacks and reject
calls. IB transports are expected to map this consumer reject code to IB code 28.

• Connect shall be non-blocking.

• Calls that may block include accept, create_endpoint, res_pool_get,

• Accept and Reject calls MUST not be restricted to the connection callback thread.

• IB transports are expected to map the IP port to a SID as detailed in the IBTA “Annex A0
Applications Specific Identifiers” specifications.

• The transport interface cannot abstract the hardware’s R_KEY when registering memory for RDMA
transfers. The actual 32-bit R_KEY from the IB interface must be provided to the SDP module. This
key will be provided to the remote SDP entity via the SDP SinkAvail and the SrcAvail messages.

9.3 InfiniBand Transport Module
No other dependencies at this time.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 10-1

10. Installation and Configuration

10.1 Offload Protocol Switch Module
TBD: update after coding.

10.1.1 Installation
+

10.1.2 Configuration

10.2 Sockets Direct Protocol Module
TBD: update after coding.

10.2.1 Installing
+

10.2.2 Configuring

10.3 InfiniBand Transport Module
TBD: update after coding.

10.3.1 Installing
+

10.3.2 Configuring

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 11-1

11. Unresolved Issues

11.1 Offload Protocol Switch Module
No unresolved issues at this time.

11.2 Sockets Direct Protocol Module
No unresolved issues at this time.

11.3 InfiniBand Transport Module
No unresolved issues at this time.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

 12-1

12. Data Structures and APIs

12.1 Offload Protocol Switch Definitions
To view the data structures and APIs associated with this component, click on here.

12.2 SDP Definitions
To view the data structures and APIs associated with this component, click on here

12.3 InfiniBand OT Definitions
To view the data structures and APIs associated with this component, click on here

