ntel.

----- Offload Sockets Framework and
Sockets Direct Protocol
High Level Design

Draft 2

June 2002

Revision History and Disclaimers

Rev. Date Notes
Draft 1 March 2002 First cut.
Draft 2 June 2002 Updated with new OFFLOAD address family architecture and naming.

Combined Socket Framework and SDP/IBT HLD's into one document..
All content included and reviewed by internal design team.

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel
disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this
specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

This Specification as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel
Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or
any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the express written consent of Intel Corporation.

Intel is atrademark or registered trademark of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002 Intel Corporation.

Approval

Role

Signature

Date

Responsible Engineer

Engineering Group Leader

Software Engineering Manager

Abstract

The Offload Sockets Framework (OSF) enables network applications to utilize Linux sockets and File I/O
APIs to communicate with remote endpoints across a system area hetwork (SAN), while bypassing the
kernel resident TCP/IP protocol stack. The offload sockets framework § completely transport and
protocol independent and can be used to support multiple offload technologies. For the rest of this
document, as an application of the Offload Sockets Framework, Sockets Direct Protocol (SDP) is used as
the target protocol and InfiniBand as the target transport. However, other transport technologies (such as
TCP Offload Engines - TOE) and protocols (such as iSCSI) can easily make use of the offload sockets
framework.

The Sockets Direct Protocol (SDP) is an InfiniBand specific Protocol defined by the Software Working
Group (SWG) of the InfiniBand Trade Association (IBTA). It defines a standard wire protocol over IBA
fabric to support user-mode stream sockets-compatible (SOCK_STREAM) networking over IBA. SDP
utilizes various InfiniBand features (such as remote DMA (RDMA), memory windows, solicited events
etc.) for high-performance zero-copy data transfers. SDP is a pure wire-protocol level specification and
does not go into any socket API or implementation specifics. Work is under way to separate the SDP
wire-protocol, which is transport and O/S agnostic, from the IBA transport dependencies. This separation
will enable transports other then IBA fabrics.

While SDP facilitates direct mapping of stream connections to InfiniBand reliable connections (or virtual
circuits), IP-Over-1B (IPolB) specifies a mapping of 1P (both v4 & v6) protocols over IBA fabric and
treats the IBA fabric simply as the link layer. IPolB specification is currently being worked on by IETF
working group and will be published as an IETF RFC. The IPolB RFC will define the packet level format
of IP packets on the IBA fabric, and also describes an InfiniBand address resolution protocol (IBARP).
Conceptually, the IPolB driver in Linux will look like a network driver and will plug-in underneath the IP
stack as any standard Linux network device. The IPolB driver exposes a network device per IBA port on
the host system, and these devices could be used to assign (statically or dynamically - using protocols
such as DHCP) |IP addresses. The SDP stack simply makes use of these IP assignments for endpoint
identifications.

SDP only deals with stream sockets (TCP), and if installed in a system, alow bypassing the OS resident
TCP stack for al TCP connections between any endpoints on the IBA fabric. All other socket types (such
as datagram, raw, packet etc.) are supported by the Linux IP stack and operate over the IPoIB drivers. The
IPolB stack has no dependency on the SDP stack; however, the SDP stack depends on I1PolB drivers for
learning about local 1P assignments and for address resolution.

The Linux implementation of SDP includes many interdependent pieces that are referred to as Offload
Sockets Framework (OSF). OSF enables applications to use these same standard sockets and File 1/0
APIs to transparently communicate with remote endpoints/nodes across a system area network (SAN),
bypassing the kernel resident TCP/IP protocol stack. This framework will aso alow applications to
bypass the resident TCP/IP protocol stack while using the default address family of AF_INET.

OSF includes an Offload Protocol Switch (OPS) module (Ipv4 internet protocol switch) that alows
integration of Offload Protocol (OP) modules aong side the existing TCP/IP stack, an OP module that
supports SDP wire protocol, an Offload Transport Interface that provides a common interface to Offload
Transport (OT) module that supports InfiniBand hardware. This design document covers the specifics of
all three components.

Contents

1.
11
1.2
1.3
1.4
15
1.6
2.
3.
4.
5.
5.1

52

5.3

INTFOAUCTION Lo e e e e e et e e e e e e e e a 1-1
PUIPOSE AN SCOPE .. oviiiiiii e e e e e e 1-1
B o 1= o= PN 1-1
Yol (0])Y 4 = U To B 1= 1 N 11
R O BN S .. it 1-1
L0 0117 11T L 1-2
BEefOre YOU BeOIN ..ouiiiei e 1-2
FEALUMES .. .uvuieiiiiiiiiiiii e Error! Bookmark not defined.
Design ASsSumptions & RUIESoooiiiiiiiii e 3-3
DESIGN OVEIVIEW....eiiii ettt ettt ettt e e et e e e s e ae e e e e e e e e s enreeeeans 4-1
DeSIgN DELaAIIScoiiiiiiieie e 5-1
Offload Protocol SWItCh MOdUIE...........coeiii e 5-1
511 Linux Kernel ModifiCations...........c.ocuuiiiiiiiiicic e 5-1
5.1.2 1 TE T 4= 14 oo 5-1
5.1.3 RS 1010 (01,1 o PP 5-1
5.1.4 Socket driver modifiCatioNS...........vvvuieiii e 5-2
5.1.5 Offload dat@a StIUCIUIES 5-3
5.1.6 SOCKEL CTEALE. .. .uiu et ee e e e e e e e e e e e e e e e ens 5-6
5.1.7 SOCKEL DING. . .ceeeiee e 5-8
5.1.8 SOCKEL TISLEIN .. et 5-10
5.1.9 SOCKEL CONMNECE ... it e e e e eans 5-12
5.1.10 Socket accept and poll onalisten FDccvvviiiiiiiii e 5-14
5111 Socket operationson aconnected FD............coevuiiiiiiiiiiiiniece e 5-15
Sockets Direct Protocol MOdUIE...........oouiiiiiie e 5-16
521 Linux Kernel ModifiCations...........c.oouuiiiiiiiiii e 5-16
5.2.2 LT 4= 1 o o P 5-16
5.2.3 ShULAOWN ... e 5-16
5.2.4 20 R S = (o Y/ 5-17
5.25 CONNECHION SEIVICES ..ttt e e e e e anas 5-18
52.6 Completion MOE]iiiii e 5-18
5.2.7 DataTransfer MOGEIScouuiiiiiii e 5-18
528 Locking and Threading MOdEl............ccouiiiiiiiiiiiiei e 5-19
InfiniBand Offload Transport MOAUIE...........uiiieiii e e s 5-20
5.3.1 Linux Kernel ModifiCationS...........oviiiiiiic e 5-21
5.3.2 g1 = 4= 4 oo 5-21
5.3.3 IS 1010 (011 o PP 5-21
534 CONNECHION SEIVICES ..ttt ettt e e e e e e e aneanns 5-21
5.35 20 R S - (o VP 5-21
5.3.6 DataTransfer SEIVICEScvuiiiie e 5-22
5.3.7 COMPIELION SEIVICES ...civneitieee e e e e e e e een 5-22
5.3.8 Locking and Threading MOEl.............covuiiiiiiiiiiiic e 5-23

System ReSOUIrCe USAge ..., 6-24

6.1 Sockets Direct ProtoCol MOAUIEcuoviniiiie e 6-24

6.2 InfiniBand Transport MOAUIE. ..o e 6-24
7. Internal CompPatibilitycooeeeiiiei 7-1
7.1 Interaction with Other COMPONENTSovuiitiii e 7-1
7.1.1 Socket Driver and OPS Module Interaction............c.ccoveeiviiiineiineineannns 7-1

7.1.2 OPS and SDP Module INteractionoceuviiiiiiiniiiee e 7-2

7.1.3 SDP and InfiniBand Transport INteractioncccooeevveerneiiinieennennnnn. 7-4

: External Compatibilitycccoiiiiiieii e 8-5
8.1 1 7= T T F= T o PP 8-5
8.1.1 Sockets Direct Protocol Moduleooooiuiiiiiiiiii e, 8-5

8.1.2 InfiniBand Offload Transport Moduleccooiiiiiiiii e 8-5

9. Other DEPENUENCIES.cciiiiiiee ettt e a e 9-1
9.1 Offload Protocol SWitch MOAUIE ..o 9-1
9.2 Sockets Direct Protocol MOAUIEcouuiiiiiiiii e 9-1
9.3 InfiniBand Transport MOAUIE..........ccuiiiiiii e 9-1
10. Installation and Configuration...........occeeiie e 10-1
10.1 Offload Protocol SWitch MOAUIEc..iiiiiiiiiiii e 10-1
10.1.1 1S 2= 1= 1 T o T 10-1

10.1.2 CoNfIQUIALION ... e 10-1

10.2 Sockets Direct Protocol MOAUIEc.iiniiiiii e 10-1
10.2.1 1S 2= 11 o Vo P 10-1

10.2.2 (0] 010 T8 1T PP 10-1

10.3 InfiniBand Transport MOAUIE..........couuiiiiiii e 10-1
10.3.1 INSEAIIING ...ceee e e 10-1

10.3.2 CONTIGUIING ...t 10-1

11. UNTESOIVEA ISSUEBS ..o 11-1
11.1 Offload Protocol SWitch MOAUIEoiiniiiii e 11-1
11.2 Sockets Direct Protocol ModUIeooouuiiiiiiiiiiii e 11-1
11.3 InfiniBand Transport MOGUIE..........couuiiiiii e 11-1
12. Data Structures and APIS ... 12-1
12.1 Offload Protocol Switch Definitionscciiiiiiiiii e 12-1
12,2 SDP DEfiNItiONS ...oeuiiiiiiiiii e 12-1
12.3 INfiniBand OT DefiNitiONScouuiieii e 12-1

Figures

Figure 1 High Performance Sockets in the Kerneloovuiiiiiiiiii e 4-1
Figure 2 SDP Buffer MOOE OVEIVIEWieeiiiiiieiii et 5-17
Figure 3 InfiniBand offload Transport Service COmMpoNents...........ccc.eevvieiiieenieenieeniennnnns 5-20
Figure 4 Proposed Patch to Linux SOCKEt DIIVEr.......c.ciuiiiiiiiei e 7-1
Figure 5 OPS and SDP iNtEraCtioNvivruiiiiieiii et 7-3

Figure 6 SDP and InfiniBand TranSPOrt.........coiuiiiiiiii e e eaaas 7-4

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

1. Introduction

1.1 Purpose and Scope

This HLD defines the implementation of al offload components described in the “Offload Sockets
Framework and Sockets Direct Protocol Architecture Specification”, including inter-component
dependencies, and provides sufficient design detail that will satisfy the product requirements as specified.

1.2 Audience

Anyone interested in understanding this implementation of the Architecture Specification should read this
document, including:

Software developers who are integrating the separate modules into their own software projects
Hardware devel opers who need an understanding of the software behavior to optimize their designs
Evauation engineers who are developing tests for InfiniBand-compliant devices

Othersin similar roles who need more than a basic understanding of the software

1.3 Acronyms and Terms

OSF: Offload Sockets Framework (Software components that enables protocol offloading)
OPS: Offload Protocol Switch (A logica software module that performs protocol switching)
oT: Offload Transport (An entity that exports reliable transport semantics)

OTI: Offload Transport Interface

OP: Offload Protocol (Any upper layer protocol run over OTs. E.g. Sockets Direct Protocol)
SDP: Sockets Direct Protocol (A Socket emulation protocol specified for InfiniBand)

TOE: TCP Offload Engine (Hardware that supports offloading TCP/IP protocol from host)
IBA: InfiniBand Architecture

IPoIB: IP-over-InfiniBand (and IETF defined RFC to send IP packets on InfiniBand fabric)
1.4 References

InfiniBand

InfiniBand Architecture Specification, Version 1.0a, http://www.infinibandta.org/
IPover IB |ETF draft: http://www.ietf.org/ids.by.wg/ipoib.html
InfiniBand Specification Annex A4 - Sockets Direct Protocol (SDP), Release 1.0.a

1-1

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

Sockets
Fast Sockets reference; http://www.cs.purdue.edu/homesyau/cs690y/fastsocket.ps

Stream Socket on Shrimp reference: http://www.cs.princeton.edu/shrimp/Papers/canpc97SS.ps

Device Drivers

Rubini, Alessandro and Corbet, Johathan. Linux Device Drivers Book, 2" Edition: O’ reilly, June
2001. ISBN: 0-59600-008-1. http://www.xml.com/ldd/chapter/book/

1.5 Conventions

This document uses the following typographica conventions and icons:

Italic is used for book titles, manual titles, URLS, and new terms.
Bold is used for user input (in the Installation section).
Fi xed wi dth is used for code definitions, data structures, function definitions, and system

console output. Fixed width text is aways in Courier font.

/% NoTE

Is used to alert you to an item of specia interest.

(1 DESIGN ISSUE

Is used to dert you to unresolved design issues that may impact the modul€’ s design, function, or
usage.

1.6 Before You Begin

Please note the following:

This document assumes that you are familiar with the InfiniBand Architecture Specification, which is
available from the InfiniBand Trade Association at http://www.infinibandta.org.

1-2

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

2. Features

This section lists a set of features and goals for Offload Sockets Framework (OSF) support in Linux. The
items listed in this section are by no means complete and may need to be further refined before finalizing
on the best solution.

All offload protocolg/transports need to have a standard Linux network driver. This alows
network administrators to use standard tools (like ipconfig) to configure and manage the network
interfaces and assign | P addresses using static or dynamic methods.

The offload sockets framework should work with and without kernel patches. To this effect, the
offload protocols and transports will resde under a new offload address family
(AF_INET_OFFLOAD) module. Applications will be able to create socket instances over this
new address family directly. However, for complete application transparency, an optional
minimal patch to the Linux kernel (socket driver) can be applied to alow re-direction of
AF_INET sockets to the new AF_INET_OFFLOAD address family. The AF_INET_OFFLOAD
module will work as a protocol switch and interact with the AF_INET address family. The patch
also defines a new address family called AF_INET_DIRECT for applications that want to be
strictly using the OS network stack. This kernel patch can be optional based on distributor and/or
customer requirements.

All standard socket APIs and File I/O APIs that are supported over the OS resident network stack
should be supported over offload sockets.

Support for native Asynchronous 1/0 (AIQ) is being worked in Linux community. The offload
framework should utilize this to support newer protocol and transports that are natively
asynchronous. (For example, SDP stack could utilize the AlO support to support PIPELINED
mode in SDP)

Architecture should support a layered design so asto easily support multiple offload technologies,
and not just SDP. This insures the offload sockets framework is useful for multiple offload
technologies.

The proposed architecture should support implementations gotimized for zero-copy data transfer
modes between application buffers across the connection. High performance can be achieved by
avoiding data copies and using RDMA support in modern interconnects to do zero copy transfers.
This mode is typically useful for large data transfers where the overhead of setting up RDMA is
negligible compared to the buffer copying costs.

The proposed architecture should support implementations optimized for low latency small data
transfer operations. Use of send/receive operations incurs lower latency than RDMA operations
that needs explicit setup.

Behavior with signas should be exactly same as with existing standard sockets.

i sten() on sockets bound to multiple local interfaces (with IPADDR_ANY) on a AF_INET
socket should listen for connections on all available IP network interfaces in the system (both

offloaded, and non-offloaded). This requires the |isten() cal from application with
IPADDR_ANY to bereplicated across dl protocol providers including the in-kernel TCP stack.

Multiplexed 1/0 operations using API’'s such as sel ect () and pol I () should work across
AF_INET socket file descriptors supported by different protocol/transport providers including the

2-1

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design
in-kernel 1P stack. This guarantees complete transparency at the socket layer irrespective of
which protocol/transport provider is bound to a socket. .

Operations over socket connections bound to the in-kernel O/S protocol (TCP/IP) stack should be
directed to the TCP/IP stack with minimum overhead. Application bound to kernel network stack
should see negligible performance impact because of offload sockets support.

Ability to fallback to kernel TCP/IP stack dynamically in case of operation/connection failure in
direct mapping of stream connections to offloaded protocolg/transports. Connection requests for
AF_INET sockets that fail over offload stack is automatically retried with the kernel TCP/IP
stack. Once a direct mapped connection is established, it cannot be failed back to the TCP stack,
and any subsequent failures are reported to application as typical socket operation failures.

Offload Socket framework enables sockets of type STREAMS only. Other socket types (such as
RAW, DATAGRAMS, PACKET etc.) will use only the OS network stack.

Offload sockets framework will support offloading of stream sessions both within local |P subnet
and outside local |P subnet that needs routing. Offload protocol s'transports will have the ability to
specify if they do sdlf-routing or need routing assistance. Ability to offload stream sessions
remote | P subnet will be useful for TOE vendors in general and for IBA edge router vendors who
map SDP sessions on IBA fabric to TCP sessions outside fabric. For protocol s/transports that do
sdf-routing, the offload sockets framework smply forwards the requests to them. For
protocol s/transports that need routing support (such as SDP), the framework utilizes the OS route
tables and applies its configurable policies before forwarding requests to offload transports. This
enables the use of O/S managed route tables to configure both offload and non-offload stacks.

Since the socket API extensions defined by the Interconnect Software Consortium (ICSC) in the
open group is work-in-progress at this time, the offload sockets framework will not attempt to
address them in this phase. This could be attempted at a later phase.

Offload sockets framework should not affect any existing Linux application designs that uses

standard OS abstractions and features (such as fork(), exec(), dup(), clone(),
etc.). Transparency to applications should be maintained.

Offload sockets framework should support both user-mode and kernelmode socket clients and
maintain the existing socket semantics for existing user mode or kernel mode clients.

The offload sockets framework currently deals with only 1Pv4 address family. Even though the
same offload concepts can be equally applied to offload 1Pv6 family, it is deferred for later stages
of the project.

2-2

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

3. Design Assumptions & Rules

Design is based on Linux 2.4.x kernel feature set. Kernel modifications will be limited as much as
possible and will be isolated with compile time switches. Asynchronous I/O kernel support that is
currently under development in the Linux community will be monitored and will be supported as part of
this design when it becomes available. Both 1A32 and |A64 environments will be supported. This project
is specific for IPv4 address family but will design with future IPv6 in mind.

3-3

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

4, Design Overview

The Offload Sockets Framework architecture implements high-performance socket support in the kernel
by providing a new Offload Protocol Switch (OPS) viaanew address family (AF_INET_OFFLOAD)
module. This new address family module will support dynamic binding of offload protocols and
transports under the offload address family. The offload protocols will register with the offload family
and the transport modules will register with the offload protocol modules. The offload sockets
architecture is shown in Figure 1.

Existing OS Components

Legacy user-mode
socket application

Hardware
New OS Components

Other new Components

IBA specific Components Glibc
3 User
Virtual Kernel
File N Socket Layer
System
(VFS)
v
dd i Address Family AF_INET_OFFLOAD
Address Family AF_INET — (Offload Protocol Switch)
ARPA Stack Socket Interface TOE
Protocol
uDP | | TCP |
|) Module
Sockets Direct
| P | Protocol
Module
I Transport Interface
Neighbor |
H Al
ARP Table IBARP

Network Link Level Device Interface

I InfiniBand
IPoIB Link Transport
Driver Module

i i

InfiniBand Access Layer
HCA Driver (Verbs) TOE
InfiniBand Host Channel Adapter Hardware

Figure 1 High Performance Sockets in the kernel

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

There are multiple major components to this, such as the Offload Protocol Switch (OPS) module, the SDP
offload protocol (OP) module (which include the socket and transport Interface), and the InfiniBand
offload transport (OT) module.

4-2

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

5. Design Detalils

51 Offload Protocol Switch M odule

The Offload Protocol Switch (OPS) module exposes a new address family (AF_INET_OFFLOAD) and
preserves the socket operation semantics with the kernel socket driver at the top. At the bottom it provides
anew offload protocol structure and interface for offload protocols. These offload protocols will register
with the AF_INET_OFFLOAD address family during initialization using an exported registration call.

The OPS module islogically athin veneer between the socket driver and the INET offload protocols.
OPS interna interfaces will be defined to provide routing information for the offload protocol modules
and transport interfaces. All external interfacesto AF_INET_OFFLOAD are defined by the Linux socket
cdlsini ncl ude/ l'i nux/ net. hand i ncl ude/ Il i nux/ sock. h.

This module is capable of switching socket traffic across multiple offload protocol modules underneath
via supplied protocol address information. The module will aso be capable of failing back to standard
AF_INET stack if failures occur during connection initiation over a offload protocol stack. This switching
to the standard stack requires no changes to the AF_INET stack.

51.1 Linux Kernel Modifications

The OPS module will be coded asanew Linux AF_INET_OFFLOAD address family. This requires new
definitions, AF_INET_OFFLOAD and AF_INET_DIRECT, in the kernel

I'i nux/include/linux/in.h includefile.

5172 Initialization

The OPS kernel module will be demand loaded during system initialization. The OPS module will have a
dependency on the standard Linux socket driver. Actual OPS initialization is performed in accordance

with the standard Linux kernel module load procedure; the ‘i ni t _nodul e() ' function is called once
the OPS module has been successfully loaded into the kernel. See section 7.1 for OPS initialization
process and interaction with the offload protocol modules.

51.3 Shutdown

OPS shutdown can be initiated in one of two ways:
During normal system shutdown procedures.

The OPS module is forcibly removed using the Linux system administration command ‘ rmmod’
(remove module).

With either method, the OPS module unload function ‘cl eanup_nodul e()’ iscaled per the standard
Linux kernel module unload procedure. The OPS ‘cl eanup_nodul e()’ function will notify the
protocol modules of the pending OPS module shutdown. It is expected that al offload protocol modules
will shutdown by releasing alocated system resources, halting and unloading. See section 7.1 for OPS
shutdown process and interaction with offload protocol modules.

5-1

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

514 Socket driver modifications

This section describes the Linux kernel patch envisioned to support the offload protocol switch (OPS).
The OPS is packaged as a separate address family (AF_INET_OFFLOAD) module. This alows OPS to
be used without any Linux kernel patches, as long as applications explicitly specified the
AF_INET_OFFLOAD address family during socket creation. However, this solution is not suitable for
applications that need binary/legacy compatibility (uses only AF_INET family sockets) and flexibility to
run over offloaded or non-offloaded stacks without modifications. A minor Linux socket driver patch
achieves the binary backward compatibility of applications.

The current Linux socket driver address family switching logic is shown below first, followed by the
patched socket driver logic. With the socket driver patch, whenever a AF_INET socket is created by an

Original Socl:_e?_’\ [T ortioad proto_ops’ | AF_INET_OFFLOAD Native Sock%"\
L > = dffload_release() e ———
Type offload_bind() Type
offload_connect() AF_INET
Flag offload_socketpair() Flag Sieans
offload_accept() proto_ops
Inode offload_getname() Inode -
- offload_poll
Fasync list Offoaaponly Fasync list
ffload_listen()
File ° - File
offload_shutdown()
Proto_ops offload_setsockopt() Proto_ops
offload_getsockopt()
State offload_sendmsg() State
oo e o o ey offload_recvmsg() AF_INET
Sock offload_sock_t ! offload_mmap() Sock streams
— = offload_sendpage() struct
—~
parent sock |——
org_socket
native_socket | I—
offload_list next offload_prot_t
accept_queue I
accept_lock {_“_ °'”2§d—p”’f_—_[__ ! offload_prot_ops_t
sleep N
Next :
sdp 0
e lock 0
Struct Sock state I
Tt T parent_sock
w
daddr il prot
rcv_saddr Private Data
dport Callbacks
local_port
Sport
Saddr sdp_name[32]
bound dev if » sdp_stats[NR_CPUS]
State Cc»nnecl Callback()
Listen Callback()
type Event Callback()
Protoocol destruct()
family
refcount Private Data
shutdown J
lock Offload
Tovbuf Protocol's
Private Data
SndBuf (Transport ops)
recv gueue
write_queue
Sleep offload_register_protosw()
Error Queue offload_protosw_t
Prot next registered
TP Info Next L——= offload protocol
Local Route type X
protocol socket interface
Rcv Lo Wat ops
Rcv Timeout prot protocol interface
SndTimeont T 0 sockete
- rotocol's
Protocol Private b [AF et
D link addresses
ata [AF INET_OFFLOAD
Socket 1 rPrOTO_SDP
User Data [offioad Transport
Callbacks

socket and sock structures (with offload stack)

application, if it is of type SOCK_STREAM and if the OPS module is loaded and registered with the
socket driver, the socket creation calls are forwarded to the OPS module (or AF_INET_OFFLOAD)
family. The patch also exposes as new address family called AF_INET_DIRECT if specific applications
wanted to specify during socket creation not to attempt offloading them. Section 5.1.6 explains another
reason to expose the AF_INET_DIRECT address family to avoid endless loop in the socket driver.

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

515 Offload data structures

5-3

Original SocketK_\

|~ -4
Ll

Type

Flag

Inode

Fasync list

File

Proto_ops

m————

IBA Software A==hitecture

Offload proto_ops (| AF_INET_OFFLOA

Direct Protocot -3
' ?CtNative Socket

State

Sock

{,;‘ffload_release()

i T

offload_bind()
offload_connect()
offload_socketpair()
offload_accept()
offload_getname()
offload_poll()
offload_ioctl()
offload_listen()
offload_shutdown()
offload_setsockopt()
offload_getsockopt()
offload_sendmsg()

offload_recvmsg()

offload_sock_t offload_mmap()

offload_sendpage()

A 4

parent sock

————

Struct Sock

daddr

org_socket

native_socket N

offload_list

accept_queue

Type
AF_INET
Flag streams
proto_ops
Inode
Fasync list
File
Proto_ops
State
AF_INET
Sock streams

N

struct
sock

next offload_prot_t

accept_lock

offload_prot_t

offload_prot_ops_t

sleep

.

Next

lock

sdp_init()
sdp_close()
sdp_connect()
sdp_disconnect()

state

sdp_accept()
sdp_ioctl()

parent_sock

A

rcv_saddr

dport

local_port

Sport

Saddr

bound dev if

State

type

Protoocol

family

refcount

shutdown

lock

rcvbuf

SndBuf

recv queue

write_queue

sleep

Error Queue

Prot

TP Info

Local Route

Rcv Lo Wat

Rcv Timeout

Snd Timeout

Protocol Private
Data

Socket

User Data

Callbacks

sdp_destroy()
sdp_shutdown()

prot

sdp_setsockopt()
sdp_getsockopt()

Private Data

Callbacks

Connect Callback()
Listen Callback()
Event Callback()

destruct()

A

Private Data

sdp_sendmsg()
sdp_recvmsg()
sdp_bind()
sdp_backlog_rcv()
sdp_hash()
sdp_unhash()
sdp_get_port()
sdp_name[32]
sdp_stats[NR_CPUS]

ti_ops_t

event_register()
event_deregister()
create_ti()
destroy_ti()
debug_svc()

A

Offload

create_endpoint()
destroy_endpoint()
create_pd()

Protocol's
Private Data
(Transport ops)

offload_register_protosw()

offload_protosw_t

next registered

Next

—» offload protocol

type

protocol

socket interface

ops

prot

protocol interface

addr_list

protocol's
link addresses

5-4

ILATREATN

socket.c
AF_INET

Offload Transport

destroy_pd()
create_cq()
poll_cq()
rearm_cq()
destroy_cq()
connect()
accept()

reject()

listen()
disconnect()
reg_virt_mem()
reg_phys_mem()
dereg_mem()
res_pool_create()
res_pool_destroy()
res_pool_get()
res_pool_put()
msg_send()
msg_recv()
rdma_read()
rdma_write()
atomic_op()
io_ctl()

N

AF_INET_OFFLOAD
IPPROTO_SDP

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

This section attempts to describe the offload data structures and how they relate with the existing Linux
socket and sock data structures. Linux networking stack utilizesthe socket and sock data
structures for al socket management functions across the various layers. Thesocket structureis
typically created by the socket driver and the sock structure is created by the address family driver.

Typically a socket structure has a single sock pointer in it which points to the address family and protocol
specific operations on that socket. The primary reason for thisis that during socket creation the address
family and protocols are well specified which alows the socket to bind itself during socket creation to a
particular protocol. However with offload socket framework, to deal with IPADDR_ANY and
IPPROTO_ANY conditions where a specific protocol or local endpoint is not specified upfront, there is
need for multiple offload protocols to be linked to the same socket until enough information comes
(during bind or connect) to bind the socket to a specific protocol. To fulfill this requirement the socket
structure is transparently modified (by adding more members to the end of the buffer pointed by the
sock member element). Thus a socket created by calling the OPS module has the socket - >sock
field pointtoan of f | oad_sock_t structure. Theof f| oad_sock_t structure starts with a sock
element followed by other elements. The of f | oad_sock_t containsaof fl oad_I i st which points
toalinked list of of f | oad_prot _t structures each representing a offload protocol module registered
with the OPS. Theof f | oad_pr ot _t structures keep al the data and state needed by the offload
protocols and transports.

Since the sockets created by the OPS can span over multiple protocols (including the AF_INET TCP
protocol), a higher level accept queue is maintained at the of f | oad_sock_t leve. The

of f 1 oad_sock_t asopointsto a‘Native socket’ which pointsto a fully qualified socket that is
created using the same credentials as the * Original socket’ but over the standard Linux AF_INET address
family.

For specific details of the of f | oad_sock_t structure, please refer the accompanying data structure
definitions in section 12.

5-5

5.1.6

Socket create

sock_create() may be patched to forward
AF_INET create call. Patch will check for
sock_create call from af_inet_offload module
using AF_INET_DIRECT designation.

org socket == offload protocol ops 4

org socket has
socket->file = fd

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol

High Level Design

Application

org socket == AF_INET_OFFLOAD ops >

sock_create() allocates a

Setorg->ops
to call directly
to offload
protocol.
Release native
socket and
inode.

y

org socket == AF_INET ops >
ERROR
P

Set org->ops
to AF_INET.
Assimilate into
org and
release native
socket and
inode.

A

Set org->ops to
call af offload.
org->sock =
offload structure
which includes
org socket, native
socket (if
patched), and
registered
protocols.
Could release
native inode?

A

YES

Native
socket?

YES

all init's

Native
socket?

socket structure and gets
inode, then calls
offload_create()

¢ org socket

Call sock_create with

AF_INET
or
AF_INET_OFFLOAD

AF_INET_DIRECT

|:| socket.c
[aF_NET

] AF_INET_OFFLOAD

(I
1

IPPROTO_SDP

IPPROTO_TOE

sock_create() allocates a

AF_INET family to setup
native socket

native_socket NO

Pt socket structure and gets
inode, then calls

native socket

successful?

YES

socket.c patch applied
and protocol is
supported by AF_INET

inet_create()

native socket

Create TCP
Sock and link to native
socket.
sock->proto = TCP
sock->tp_info = tcp_opts

no socket.c applied or
protocol is not
supported by AF_INET

NO

NO

Type=Streams?

offload protocols

'

registered and YES

failed?

NO offload

protocol init
sucessful?

YES

init every registered
offload protocols

IP_PROTO_ANY?

!

call sock->prot:

create matching
offload sock structure
and setup protocol, then
->init

i

| protocol init function ”

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design
This section illustrates the socket creation process using the offload sockets framework. The socket driver
sock_creat e() function createsthe ‘Original socket’” structure and forwards the call to the OPS
module by calling its of f | oad_cr eat e() entry pointinthepr ot o_ops table of the socket. The
OPS module cdlls back the socket driver’'ssock_cr eat e() function with the AF_INET_DIRECT
address family to create a‘ Native socket’ over the AF_INET stack. If the native socket creation was
successful, it implies that the socket driver patch is running and the application specified protocol is
something supported by the OS AF_INET stack.

OPS checksiif the application specified protocol inthe socket () callsisaoffload protocol registered,
and aso if the type of socket specified by application is STREAM (since OPS only offloads STREAM
sockets). If amatch is not found, the specified protocol is not offload able and the native socket is copied
to the original socket to fulfill the socket creation request. If the native socket was not available, then the
socket creation call isfailed and returned. If a match is found, OPS checks if the protocol specified isa
wildcard (IP_PROTO_ANY). If it isawildcard protocol, then the socket context initiaization function
needs to be called on al the registered offload protocol modules one after the other. If a specific protocol
is specified by application (like say IPPROTO_SDP or IPPROTO_TCP), then the specific protocol
modul€' s socket initialization function is called. If the protocol module initialization fails, then the OPS
attempts afail back to the AF_INET protocol stack if a native socket was available.

Based on the above conditions, the of f | oad_cr eat e() cdl from the socket driver could return with
either ori gi nal _socket - >pr ot o_ops pointing to pratocol operation call table of OPS, or protocol
operations of a specific offload protocol (such as SDP), or protocol operations of AF_INET, or aNULL
indicating error. In any case, thisis completely transparent to the socket driver and the application above
it.

5-7

5.1.7

NOTE: AF offload would only
be called if
offload_sock_create() resulted
in both offload and native
sockets being created or if the
bound offload protocol
specifies
AF_INET_OFFLOAD entry
points in it's proto_ops.

Socket bind

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

Application
bind()

socket->ops =

sock_bind() forwards call to
AF_INET_OFFLOAD module

protocol
registered?

IP_PROTO_ANY

AF_INET_OFFLOAD

socket->sock = af_offload_sock

A 4

Native
Socket?

:l socket.c
] AF_INET

1 AF INET_OFFLOAD

[—
]

IPPROTO_SDP

IPPROTO_TOE

call

native->proto_ops->bind
with sockaddr

v

inet_bind() will get/hash
port with TCP stack

call specific
offload->prot->bind
with sockaddr

native bind
success?

w

offload->prot->bind

use native port
for offload
binds

1st offload
port used for
all binds

offload bind
success?

ERROR

Return to application

v_.¥

For each offload
protocol
registered

SDP
on TC

Bind TOE Bind
P port on TCP port

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

This section illustrates the program flow in the OPS for a socket bi nd() operation. Since the socket
creation request was forwarded to the OPS module by the socket driver (as described in the previous
section), thesocket - >pr ot o_ops at the time of bind points to the function call table of the
AF_INET_OFFLOAD address family as exposed by the OPS driver. The socket driver smply forwards
the bi nd() operation to the AF_INET_OFFLOAD address familiesbi nd() entry point as exposed in
thesocket - >pr ot 0_ops member.

Once the OPS modul€' s bind entry point gets called by the socket driver, it first checks for if the protocol
specified on the socket isawildcard (IP_PROTO_ANY) protocol. If it is not awildcard protocol, the bind
entry point of the appropriate offload protocol module that supports the specified protocol is called. If the
protocol modules bind fails, an error is returned.

If awildcard protocol was specified during the *Original socket’ creation (as explained in previous
section), the OPS attempts to make sure the same bind port is used for all the protocol modules. If abind
port (well known port) is specified by the application, the specified port value is used on binds to all the
registered protocol modules. If a dynamic port is specified by the application (port = 0), then a dynamic
bind is done over the first offload protocol, and the port value returned is used to do the binds on rest of
the protocols. Also, in case of wildcard socket binds, the ‘ Original socket’ isfirst checked to seeif a
native socket handle (bound over the AF_INET stack) exists within the * Original socket’. If a native
socket is not present, the bind is first attempted over the * Native socket’ (causing a TCP bind). If the
‘Native socket’ bind returnsin error, the bind fails immediately. If the ‘Native bind’ succeeds, then the
binds on al other offload protocol modules are attempted. This guarantees that for dynamic ports, the port
value returned by TCP can be used for binds on all other protocols, thereby unifying the port space for the
application.

5-9

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

5.1.8 Socket listen

NOTE: AF offload would only
be called if
offload_sock_create() resulted
in both offload and native
sockets being created or if the
bound offload protocol

Application
listen()

socket->ops =
AF_INET_OFFLOAD

specifies
AF_INET_OFFLOAD entry
points in it's proto_ops.

sock_listen() forwards call to
AF_INET_OFFLOAD module

protocol
registered?

IP_PROTO_ANY

socket->sock = af_offload_sock

:l socket.c

AF_INET
AF_INET_OFFLOAD

IPPROTO_SDP

JEEL

IPPROTO_TOE

Native NO
Socket? Need to get "syn recv"
indication from native stack
without mods to stack.
OPTIONS:
1. One Thread per socket,
Blocks on native FD. CPU
utilization ok but extra thread per

socket.
call 2. One thread for all native
native->proto_ops->listen sockets calls tcp_poll with no

timeout. CPU utilization

¢ problem? Not sure if there is a

inet_li

streams stack

time passed with poll_table?
3. One thread for all native
sockets calls tcp_accept with
NON-BLOCKING? CPU

sten() will call TCP

call specific
offload->prot->listen

A

offload->prot->listen

offload listen
success?

YES

NO

utilization problem?
* 4. Could call tcp_poll with a file
desc and wait object created by
OPS which will span all sockets?
Wake up a walk all sockets with
accept.

native listen
success?

Y \ 4

For each offload
protocol
registered

Return to application

5-10

SDP listen TOE listen

YES all
listen's

failed?,
NO

A

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design
OPS handles socket listen very similar to how bind is handled. Listens on sockets that are bound to a
specific protocol are forwarded to the protocol module handing the specific protocol. For wildcard
protocol bound sockets, the listens are posted on all the available protocol modules bound to the socket,
including TCP if a‘Native socket’ is attached to the ‘Original socket’. Since TCP interface uses blocking
semantics for operations such as accept(), poll() etc., the OPS module utilizes a worker thread to process
these operations. Also, agloba accept queue is constructed at the OPS module to process incoming
connection requests through any of the protocol modules, including TCP. The accept/poll section
describes details on these operations.

5-11

5.1.9

NOTE: AF offload would only
be called if
offload_sock_create() resulted
in both offload and native
sockets being created or if the
bound offload protocol

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

Socket connect

Application
connect()

socket->ops = AF_INET_OFFLOAD

Y

specifies
AF_INET_OFFLOAD entry
points in it's proto_ops.

sock_connect() forwards call to
AF_INET_OFFLOAD module

Is protocol
self-routing?

l socket->sock = af_offload_sock

offload route NO

possible?

Yes

Native
Socket?

:l socket.c
1 AF_INET

1 AF INET_OFFLOAD

/
L1

IPPROTO_SDP

IPPROTO_TOE

Call prot connect with 1st
hop sockaddr = NULL

Determince 1st hop
based on routing info.
Call prot connect with 1st
hop sockaddr = haddr

call
native->proto_ops->connect

v

—

+_1

offload->prot->connect

inet_connect() will call TCP
streams stack

|

offload
connect
success?

YES

native
connect
success?

NO NO

ERROR

Return to application

YES

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

This section illustrates the program flow in the OPS for a socket connect () operation. Since the socket
creation request was forwarded to the OPS module by the socket driver smply forwards the connect ()
operation to the AF_INET_OFFLOAD address familiesconnect () entry point as exposed in the
socket - >pr ot o_ops member.

Once the OPS modul€' s connect entry point gets called by the socket driver, it checksit’s current routing
table and based on the sockaddr passed with the connect, routes to the proper offload protocol. If no
routes are found via registered offload protocol providers then the OPS module will forward the connect
request to the native stack. Otherwise, it will check to see if the protocol provider needs first hop
information and will pass the appropriate 1% hop and final destination address information via the
protocols connect entry point. Any errors returned by the offload protocol stack or by the native protocol
stack will be returned to the application.

5-13

5.1.10

NOTE: AF offload would only be
called if offload_sock_create()
resulted in both offload and

accept() or poll()

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

Application

Socket accept and poll on alisten FD

:l socket.c

native sockets being created 1 AFNET
new socket org socket 1 AF_INET_OFFLOAD (OPS)
A
accept calls select or poll calls 1 pPROTO_SDP
offload_accept() offload_poll()
IPPROTO_TOE
org->sock = offload org->sock = offload :l -
structure which contains structure which contains
org and native sockets. org and native sockets.
(also contains list of (also contains list of
registered AP's) registered AP's)
(listen opt 4)
wake AWT and any requests accept queue any requests
schedule new in accept » <«—> in accept NO
SOert wait gqueue? queue?
native->ops-
>poll()
YES
YES
<
suspend user
process
< N
A
. get socket reference and
Pull pending address info, put accept
connect < queue and wake app process
request off the if necessay
queue
A
call -
YES inet_accept P connect request callback [«
with new
socket A A _
NO listen pption 4)
wake accepf/worker thread
(AWT) via poffload FD and
connect request connect request wait_qyeue with listen
Create a new indication from SDP indication from TOE socket #nd accept queue
socket offload g referenccik
structure and

Call proper AP

new->sock =
offload structure
which includes
new socket
reference and the

call tcp hash to
hash remote

address pair and
wake up listen

T

syn packet
indication fromTCP

AP proto_ops

[

return

proper POLL
bits

P

(listen option 4)
native->proto_ops->poll |«
to setup accept wait_queue

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

This section illustrates the program flow in the OPS for asocketaccept () and pol | () operation.
Since the socket creation request was forwarded to the OPS module by the socket driver, the socket -
>pr ot o_ops smply forwardstheaccept () or pol | () operation to the AF_INET_OFFLOAD
addressfamiliesaccept () or pol | () member respectively.

The OPS poll entry point is called as aresult of either a select or poll at the application level. The kernel
do_sdlect is called to handle any timeout or multiple listen FD’ s specified by the application. This
diagram covers the details of listen FD’s only. The OPS will check for listen state and for any pending
requests on the accept queue. If there are accept requests pending, it will return the proper POLL bitsto
the gpplication to indicate the pending connection. Otherwise, it will wake up the Accept Working Thread
(AWT) to setup the native accept wait_queue to process native connections (SYN). Any errors returned
by the native protocol stack will be returned to the application.

The OPS accept entry point is called as aresult of a application accept on alisten FD after apoll or select
has indicated a connection request event on a previous listen. The OPS will check for listen state and for
any pending requests on the accept queue. If there are accept requests pending, it will pull the accept
information off of the accept queue. Otherwise, it will wake up the Accept Working Thread (AWT) to
setup the native accept wait_queue and will suspend the user process.

If the accept request is a native request, then the native accept is called with the new socket. Otherwise, if
the accept request is an offload protocol request, the OPS will create a new socket offload structure and
cal the appropriate offload protocol accept. Once the offload protocol accept () returns, the OPS will
setup the proto_ops and the new socket reference and return to the application. Any errors returned by
the offload protocol stack or by the native protocol stack will be returned to the application. .

5111 Socket operations on a connected FD

Once a socket trangitions into a connected state, it is aso bound to a specific protocol that fulfilled the
connection setup. Once a socket is connected the operations on this socket are forwarded blindly to the
protocol module it is bound to through the proto operations exposed by the protocol modules. The OPS
module could aso try to remove itsalf from the function call path of a connected socket by pointing the
pr ot o_ops member of the socket structure to directly point to the of f | oad_pr ot o_ops_t
structure of the bound protocol underneath at the time of connection setup completion. Any data transfer
operations (send/recv/poll/select) are handed exactly same as how Linux stack handles them currently. If
the socket is connected through the Linux AF_INET TCP stack, the OPS module makes the origina
socket resemble a native socket with the pr ot o_ops structures pointing to the AF_INET/TCP protocol
operation call tables. With this moddl, the socket driver and application above it always sees a transparent
interface.

5-15

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

52 Sockets Direct Protocol Module

The Linux implementation of SDP includes many interdependent components that are referred to as
Offload Sockets Framework (OSF). This framework will alow applications to bypass the resident
TCP/IP protocol stack while using the default address family of AF_INET.

Offload Sockets Framework includes an Offload Protocol Switch (OPS) module (1pv4 internet protocol
switch) that allows integration of Offload Protocol (OP) modules aong side the existing TCP/IP stack, an
OP module that supports SDP on the wire, and an InfiniBand Offload Transport (OT) that provides the
trangport abstraction to an InfiniBand fabric.

There are 3 mgjor internal components of the SDP module, socket interface layer at the top, the SDP state
machine in the middle, and the transport interface at the bottom. The SDP modul e exposes the standard

pr ot o_ops cdl interface at top. In addition to the standard pr ot o_ops cal interface at the top, SDP
also supports the new extended proto operations, of f | oad_ops, as defined by the OPS interface. These
new interfaces include a new connect call that supports afirst hop IP address and a new sock structure
that defines specific offload protocol and transport details. This section covers the design details of the
Socket Direct Protocol Module.

521 Linux Kernel Modifications

The SDP module will be coded as anew Linux AF_INET network protocol type. This requires a new

definition, | PPROTO_SDP, in the kernd linux/include/linux/in.h include file. In addition to the new SDP
protocol type, the sock structure in linux/include/net/sock.h will need to be modified to include a new

sdp_opt dructure qudified with “#i f defi ned (CONFI G_SDP)”

5272 Initialization

The SDP kernel module will be demand loaded after the initiaization of OPS, normally during system
initialization. The SDP module will have a dependency on OPS. Offload transports will have a
dependency on SDP.

Actua SDP initidization is performed in accordance with the standard Linux kernel module load

procedure; the ‘i ni t _nodul e() ’ function is called once the SDP module has been successfully |oaded
into the kernel. See section 7.1 for SDP initialization process and interaction with the OPS and the OT.

5.2.3 Shutdown

SDP shutdown can be initiated in one of two ways:
During normal system shutdown procedures.

The SDP module is forcibly removed using the Linux system administration command ‘ rmmod’
(remove module).

With either method, the SDP module unload function “cl eanup_nodul e()” iscaled per the standard
Linux kernel module unload procedure.

The SDP “cl eanup_nodul e() ” function will notify the OPS and the offload transports of the pending
SDP module shutdown. It is expected that SDP will shutdown by releasing allocated system resources,

5-16

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design
halting and unloading itself. Thiswill result in a cleanup of al INET addresses in use by the OPSI on
behalf of the SDP module. See section 7.1 for SDP shutdown process and interaction with the OPS and
the OTI.

524 Buffer Strategy

SDP supports severa data transfer mechanisms designed to take advantage of reliable transports with
RDMA capabilities. Four types of transfer modes are supported with SDP; buffered, combined, write zero
copy, and read zero copy. Depending on the application workload and buffer availability, SDP will use
the most optimal mode for transferring the data.

Small transfers, determined by a data copy size threshold, will use buffered mode to transfer the data.
This mode requires a pre-allocated buffer pool that the application datais copied to/from during each data
transfer. This buffer pool is provided by the offload transports but will be sized and managed by SDP on a
per connection basis. The transport must provide a mechanism to created/destroy these pools with buffer
size, count, and data segments. A free pool queue will be provided by the transport, with alow overhead
get/put interface, to retrieve and replace buffer resources. The transport must also provide interfaces, to
send buffers, to pre-post receive buffers, and to poll or get callback indications when buffer transfers are
complete.

Large transfers, greater then the data copy size threshold, that have available read and write buffers on
each end of the connection will use the zero copy read or write mechanism to transfer the data. This zero
copy data transfer mode requires a mechanism to initialize RDMA operations with the transport. The
transport must provide a mechanism to pre-alocate RDMA transport descriptors that can be used for the
data operation to avoid unnecessary overhead in the transfer mode. The transport must also provide
interfaces to register and un-register user memory, to initiate RDMA reads/writes, and to poll or get
callback indications when transfers are compl ete.

Figure 2 illustrates the buffered mode and the zero copy paths using a reliable transport:

Private Private
Buffer Buffer
Pool Pool
Buffer K ' _ J Buffer
Copy Reliable Reliable Copy
Path Transport Transport Path
Interface Reliable Interface
Zero Connection \
Copy Zero
User Path Copy User
Buffer Path Buffer

Figure 2 SDP Buffer Mode Overview

Refer to the Data Transfer Mechanism section in the InfiniBand annex A4 Socket Direct Protocol
Specification for more details.

5-17

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

5.25 Connection Services

Sockets Direct wire protocol defines a standard message protocol that includes a Base Socket Direct
Header (BSDH) with all messages. Each message is identified with a Message Identifier (MID) and in
addition to BSDH may contain specific message information and actua upper level protocol (ULP) data.
For connection establishment the Hello Message (HM) and HelloAck Message are used and to disconnect
or abort the DisConn and the AbortConn messages are used. Refer to the SDP Message Formats section
in the InfiniBand annex A4 Socket Direct Protocol Specification for more details.

The SDP module is totaly transport independent and expects the transport to provide the address
resolution and port mapping based on its underlying link. The offload transport interface will provide a
mechanism to resolve the endpoints based on a standard | P address/port pairs and return an opaque
endpoint data handle back to SDP that can be used for either the listen or connect request.

The transport is aso required to provide a mechanism to pass private data (up to 76 bytes) with a
connection, listen, accept, and reject calls. These private data buffers are used by SDP to setup connection
attributes as defined by the Hello Message (HM) and the HelloAck Message (HAH). The connection
reject codes (consumer reject) are exported to the SDP module as specified by the InfiniBand annex A4
Socket Direct Protocol Specification.

InfiniBand’s IP over IB mapping and CM REQ does not provide enough granularity to support alisten
that multiplexes based on alink address, network address, and a port. It only provides a mechanism to
listen on the link address (GID) and the service identifier (mapped IP port). Therefore, the transport
interface must supply additional multiplexing fields in the listen call that includes an offset to private data
and asize of private data so that SDP can provide the local |P address as the additional multiplexing field.
Without this feature, SDP would be required to provide additional multiplexing on top of the listen if
there was a GID/SID conflict due to IP aliasing features of an O/S.

5.2.6 Completion Model

The transport provides a completion queue mode that allows the SDP module to either poll for
completions or to get an indication of a completion via a callback. It is assumed that the underlying
trangport and link interface provides the best possible de-seridization and scale-up with the completion
callbacks based on the hardware characteristics and workloads running on the system. The SDP module
will be capable of running at any priority including interrupt level.

SDP will initialize the CQ and size it according to the maximum work requests expected for sends,
receives, and RDMA transfers based on the initial socket creation and socket option settings. The SDP
module will setup one CQ for send messages and RDMA requests, and another one for receive messages.
This architecture allows for development of independent SDP send and receive completion engines that
can work independently.

5.2.7 Data Transfer Models

SDP defines four data transfer mechanisms:

Bcopy — transfer of user datafrom send buffers into receive private buffers.

5-18

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design
Read Zcopy — transfer of user data through RDMA reads, preferably directly to and from user
buffers.

Write Zcopy — transfer of user data through RDMA writes, preferably directly to and from user
buffers.

Transaction — an optimized user data transfer for transactions that piggy-backs user data transfers
using private buffers on the top of the Write Zcopy mechanism used to transfer the data on the
opposite half-connection.

The SDP module will be compliant with all data transfer modes as specified by the InfiniBand annex A4
Socket Direct Protocol Specification.

/% NoTE

All moddls will be supported at the final release of this product, however each mode will be
implemented in phasesin the following order: Bcopy, Read Zcopy and Write Zcopy, and finaly
transaction. Since Bcopy is the only required model to be compliant with the specification al
phases will be compliant with SDP protocol.

52.8 L ocking and Threading Model

The SDP thread safe design is based on the premise that the SDP module will be driven by externa
events and thus will not require any dedicated threads of control, which are exclusive to the SDP module.
External agents, such as an user application thread, an OPSI initiaization thread, or system event
notification will make calls into the SDP module thus providing threads of control. Accessto internal
SDP data structures will be serialized by the use of simple locks.

The offload transport may have dedicated threads of control that can invoke up-calls into SDP module.
One such case would be the invocation of an 10 completion callback routine. The SDP moduleis
designed to limit the amount of processing in the IO completion callback thread if the transport is calling
in ahigh-priority thread context such as interrupt level. All up-calls will be checked for priority levels
and processed accordingly.

5-19

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

5.3 |nfiniBand Offload Transport Module

The InfiniBand Offload Transport is designed to abstract reliable hardware transport interface specificsin
such a fashion that an offload protocol (OP) module, Sockets Direct Protocol (SDP) in our case, can
interface to a consistent transport APl over a potentially wide range of differing reliable hardware
transports. The InfiniBand Transport module will support any hardware interface that utilizes the
InfiniBand Access Layer (IAL).

The InfiniBand OT has at least one Linux network link device associated with it, represented by the Linux
struct netdevi ce. OncethelnfiniBand OT registers with the SDP module, it will provide link
device configuration events to the SDP module. In this manner, Internet link device configuration changes
(IP address assignment, address change or device shutdown) and | P network route change events will be
propagated to the offload SDP agent.

InfiniBand OT service' s defines the Internet Protocol Address format asits base level addressing
mechanism. Offload protocol modules establish connections or send/receive datagrams based on 1Pv4 or
IPv6 addressing formats. Initialy, only the IPv4 address format will be supported. Offload transports are
expected to convert an IP address into the trangport/link specific address format required for transmission
or reception. The InfiniBand OT module is designed to abstract the InfiniBand transport/link into
common OT definitions.

The InfiniBand OT module provides four groups of basic services. Each service includes a collection of
OT components that provide an implementation instance of that service. That isto say, each component
has a well-defined offload transport service interface with a behavior implemented by an offload
transport.

Figure 3 shows the OTI components that this specification defines.

InfiniBand Offload Transport Services
Connection Services Resource Pools (Datagram Pool]
[Connection) [M essage Pool] (RDMA Pool]
[y
Y [
Data Transfer Services Completion Direct Processing
Managers M anager
M essage and
RDMA services [Datagr am Service] [Polling M anagerJ

Figure 3 InfiniBand offload Transport Service Components

5-20

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design
The transport architecture is flexible enough to alow the creation of additional components for each type
of service within the transport. However, the interfaces between internal services and components not
shown in Figure 3 are outside the scope of this document.

531 Linux Kernel Modifications

The InfiniBand OT is designed as a loadable kernel module. Modifications to provide notifications of
route changes via events will require changes to the Linux kernel.

5.3.2 Initialization

The InfiniBand OT kernel module will be demand loaded after the discovery of offload capable hardware,
normally during system initialization. Actual InfiniBand OT initidization is performed in accordance
with the standard Linux kernel module load procedure; the ‘init_module()’ function is called once the
InfiniBand OT module has been successfully loaded into the kernel.

533 Shutdown

The InfiniBand OT shutdown can be initiated in one of two ways:

A network link device, which the InfiniBand OT is monitoring, is shutdown via normal system
shutdown procedures. System shutdown results in alink device event notification (System
shutdown) being delivered to the InfiniBand OT.

The InfiniBand OT module is forcibly removed using the Linux system administration command
‘rmmod’ (remove module).

With either method, the InfiniBand OT module unload function ‘cleanup_module()’ is called per the
standard Linux kernel module unload procedure.

The InfiniBand OT *“cleanup_module()’ function will notify the SDP module. The SDP module will
notify the OPSI (Offload Protocol Switching Interface) of the interface shutdown, which results in the
shutdown of INET addresses in use by the OPSI.

534 Connection Services

Connection services abstract and simplify the details of using a specific connection protocol. A
connection service is responsible for creating data transfer service's, authenticating their data transfers
with remote endpoints, and presenting configured data transfer services to the user. The library provides
asingle channel connection service that is used to establish point-to-point communication over the
transport link medium to a remote transport agent or endpoint.

Communication endpoints are identified by Internet Protocol addresses. Initialy only [Pv4 (Internet
Protocol Version 4) format addresses are supported, with provisions to support |Pv6 into the near future.

535 Buffer Strategy

Resource pools manage the alocation and distribution of data buffers, work requests, and transfer
elements. Transfer elements are used to specify data transfer operationsto the library. Work requests are
required internally by the library to perform data transfers over the fabric interconnection hardware.
There are three types of resource pools. datagram pools, message pools, and Remote Direct Memory
Access (RDMA) pools.

5-21

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

535.1 Datagram Buffer Pool

The datagram pool administers datagram e ements, queues pending requests for asynchronous operation;
and, at the user’ s option, allocates and manages the distribution of data buffers used for connectionless
message-passing operations. Datagram elements are used to request data transfers using connectionless
communication and support Segmentation and Reassembly (SAR) of connectionless messages.

5.35.2 Message Buffer Pool

The message pool is similar to the datagram pool, but message elements are used to perform data transfers
over connected channels. The message pool administers message elements; queues pending requests for
asynchronous operation; and, at the user’s option, allocates and manages the distribution of data buffers
used for message-passing operations.

5.35.3 RDMA Resource Pool

The RDMA pool manages data transfer request elements and, optionally, RDMA data buffers. The data
transfer request elements are used to signal the library to perform RDMA operations over connected
channels. The RDMA pool provides asynchronous operation for requesting resources.

5.3.6 Data Transfer Services

Data transfer services are responsible for posting the following types of requests. sends, receives, RDMA
reads, and RDMA writes. These services provide work queue management, perform message-passng
flow control and manage scatter-gather data transfer requests. Connection services are used to create and
configure data transfer services.

5.3.6.1 Message and RDMA Service

A channel provides a connected communication path between two transport endpoints. Channels support
both RDMA and message-passing data transfers and may optionally provide message-level flow control.

5.3.6.2 Datagram Service

A datagram service provides connectionless communication to remote endpoints. Multiple endpoints
may be reached through a single datagram service; however, datagram services support only
connectionless message data transfers.

5.3.7 Completion Services

Completion services check for and process completed data transfer operations. Completion services are
responsible for invoking any necessary post-processing, including user callbacks, and for resuming stalled
data transfers.

537.1 Direct Processing Manager

The direct processing manager processes completions of data transfer requests within the context of the
completion callback that delivered the completion notification to the library. This provides the lowest
possible latency for processing a single completion by avoiding a thread context switch.

5-22

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

5.3.7.2 Polling Manager

A polling manager is a completion service without active threads. A polling manager manages
compl etions across multiple data transfer services, but it relies on the user to poll for completed requests.

5.3.8 L ocking and Threading Model

The InfiniBand OT thread safe design is based on the premise that it will be driven by external events and
thus will not require any dedicated threads of control. External agents, such as the SDP module, the
InfiniBand Access Layer, or system event notification will make calls into the InfiniBand OT thus
providing threads of control thraugh the InfiniBand OT. Access to internal InfiniBand OT data structures
will be seridized by the use of smple locks.

5-23

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

6. System Resource Usage

6.1 Sockets Direct Protocol Module

Memory requirements are dependent on the socket allocation size. Private buffers will be alocated based
on the socket buffer size as specified by either the default O/S setting or by the setsockopt call from the
application. Additional overhead on a per socket basisincludesthest r uct of f | oad_ops_t
(~128bytes).

6.2 InfiniBand Transport Module

The IB Offload Transport will consume additional memory on a per socket basis based on the connection
attributes (maximum send and receive depths). Refer to the IB HCA hardware for CQ and QP overhead.

6-24

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

7. Internal Compatibility

7.1 Interaction with Other Components

7.1.1 Socket Driver and OPS Module Interaction

The Offload Protocol Switch (OPS) module provides a dynamic binding facility for offload protocols
modules. It is a loadable module that registers dynamically with the Linux socket driver (socket.c). It
exposes a new address family (AF_INET_OFFLOAD) but at the same time interacts with the AF_INET
address family so that IPPROTO_ANY traffic can be directed to both the offload protocols under
AF_INET_OFFLOAD and to the standard AF_INET protocols. Applications can also directly create
sockets on AF_INET_OFFLOAD address family and bind to any offload protocols registered with this
offload address family, without requiring any kernel patches.

In order to seamlessly support sockets created by applications with AF_INET address family a small
patch must be applied to the socket driver (socket.c) sock_create() codeto direct AF_INET address traffic
to the offload address family module (AF_INET_OFFLOAD) exposed by the OPS module. The OPS
module will switch sockets appropriately based on family, protocol type, and protocol. No modifications
are needed in the AF_INET stack since the OPS module will interact with the standard AF_INET stack
via the address family socket interface. Figure 3 shows the original Linux socket driver address family
switching logic and the changes in the proposed kerndl patch.

AF_INET_OFFLOAD AF_INET_DIRECT
[socket.c
1 AF_INET

[AF_INET_OFFLOAD

AF_INET_OFFLOA AF_INET

A A

Forward Call to Forward Call to
AF_INET_OFFLOAD AF_INET

Linux Socket Driver (socket.c) A

Forward Call to Forward Call to
AF_INET_OFFLOAD AF_INET

Patched Socket Driver (socket.c)

Figure 4 Proposed Patch to Linux Socket Driver

7-1

7.1.2

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

OPS and SDP Module Interaction

Figure 5 shows the various steps involved in the OPS and offload protocol modules initialization and
operation

1

The socket.c sock_create() code is modified to forward al AF_INET sock create calls to
AF_INET_OFFLOAD module. The AF_INET_OFFLOAD module will direct the create call
based on the offload protocols that have registered. If the create is forwarded back to the
AF_INET, the OPS will use AF_INET_DIRECT so that the sock_create() code will know to
switch the create directly to the AF_INET path thus sending al subsequent socket cals directly to
the correct family.

The AF_INET_OFFLOAD module, as part of its initialization, registers its address family
AF_INET_OFFLOAD to the socket layer by calling sock_register () call back to the socket layer.
All future socket calls, with address family AF_INET_OFFLOAD will be directed by the socket
layer to the OPS layer.

When Offload Protocol modules get loaded, the offload_register protosw() is caled to register
their entry points and capabilities like self-routing, rdma etc to the AF_INET_OFFLOAD
module.

When a network interface configuration changes (address assignment, address change, route
changes, etc.), the Offload protocol module which is bound to this network interface notifies the
OPS module by calling offload_natification().

Depending on the incoming request, the OPS module will then switch to proper protocol module.
The switching policy depends on the protocol capabilities, binding priority set by the user. The
AF_INET stack is the default stack, and if none of the offload protocol modules are loaded or if
none of the module capabilities matches the incoming request, the OPS will forward the request
to the AF INET stack. For protocol modules that do not support self-routing, the
AF_INET_OFFLOAD driver will handle the routing issues.

Once an appropriate protocol module is chosen, it is up to the protocol stack to handle the request. For
example if SDP protocol module is chosen to service an request, then it is up to the SDP module to
establish a session with its peer, pre register buffer element and decide on mode of data transfer (Send vs.
RDMA Write for example).

7-2

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

Legacy user-mode
socket application

User

Kernel
Initialization

Kernel

sock_init()

Socket Layer

OPS calls sock_register() to
register for address family
AF_INET_OFFLOAD

A

Address Family Inet
Offload Protocol Switch

\

OPS will switch to proper OP
based on registration info.

Registers protocol, type and OPS will route for OP modules
capabilities (self-routing, etc.) that do not self route.
offload_register_protosw()
Registers networkinterface
information for switching

Wildcard will fallback to offload_notification()
default stack after OP error
\ IPPROTO_SDP
ARPA Stack
UDP —em Sockets
Direct Protocol
1P

Figure 5 OPS and SDP interaction

7-3

7.1.3

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

SDP and InfiniBand Transport Interaction

Offload Transports (OTs) implement the offload transport interface abstractions. The InfiniBand transport
is designed to be a kernel loadable module, which provides an InfiniBand hardware transport specific
implementation of the offload transport abstraction defined by the offload transport interface.

Figure 6 shows the various steps involved in the OT module initialization and operation.

1. The InfiniBand (IB) Transport module will register with the SDP module and provide the
transport operations interface and capabilities.

2. The InfiniBand Transport module obtains kernel natification services for network devices, IP
configuration, and IP routing information using the device name provided by the link driver.
When an | P configuration notification occurs for this net device the transport module will forward
the via the event notification upcall to SDP, if SDP has registered for events.

3. The SDP module, using the transport register event call, will register for address, net device, and
route changes.

4. The SDP module maintains a list of transports, with address information, and will switch to
appropriate transport based on address information during a socket bind.

Each registered OT is associated with a Socket Direct Protocol Module
link device driver for IP network address
assignment. In order to track network \

device configuration changes, the OTI
registers for network device event

notifications. list of Offload Transport
structures which include
register_inetaddr_notifer() transport function
register_netdevice_notifier() dispatch table & network
register_route_notifier() device info

SDP calls transport to

InfiniBand Transport register a callback for
Network Link Level Device i ; network device events.
registers with SDP Upcall events include
Interface module address, device, or route
providing transport ops

. change.
entry points and
capabilities
sdp_register_tpsw()
IPoIB Link
Driver
sdp_unregister_tpsw() transport interfaces exported to SDP
s called by the ot_register_event, ot_unregister_event,
InfiniBand transport at ot_create, ot_destroy, ot_connect,
module unload time. ot_listen, ot_accept, ot_reject, ot_disc,
ot_ioctl, ot_send, ot_recv, ot_rdma_write,
ot_rdma_read, ot_reg_mem,
ot_dereg_mem, etc.
InfiniBand /
Transport

Figure 6 SDP and InfiniBand Transport

SDP maintains a linked

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

8. External Compatibility

8.1 Standards

8.1.1 Sockets Direct Protocol Module

The SDP module and state machine is designed to support all compliance statements highlighted in the
InfiniBand Annex A4 Socket Direct Protocol Specification.

8.1.2 InfiniBand Offload Transport Module

The InfiniBand Transport module is designed to support the new Offload Transport Interface (OTI) at the
top and interface with the standard InfiniBand Access Layer at the bottom.

8-5

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

9. Other Dependencies

9.1 Offload Protocol Switch Module

9.2 Sockets Direct Protocol Module

SDP has the following dependencies on an 1B specific Offload Transport:

Offload Transport must provide a listen interface that supports al 76 bytes of IB CM REQ private
data and will multiplex based on the IP address/port pair provided in the endpoint handle and the
specified private data. The transport shall not byte swap any of the private data. This private data will
include, in big-indian format, the SDP Hello and the HelloAck messages.

Offload Transport must support a” consumer reject” error code during connection callbacks and reject
cals. IB transports are expected to map this consumer reject code to IB code 28.

Connect shal be non-blocking.
Cdlls that may block include accept, create_endpoint, res_pool _get,
Accept and Reject calls MUST not be restricted to the connection callback thread.

IB transports are expected to map the IP port to a SID as detailed in the IBTA “Annex A0
Applications Specific ldentifiers’ specifications.

The transport interface cannot abstract the hardware’'s R_KEY when registering memory for RDMA
transfers. The actua 32-bit R_KEY from the IB interface must be provided to the SDP module. This
key will be provided to the remote SDP entity viathe SDP SinkAvail and the SrcAvail messages.

9.3 InfiniBand Transport Module

No other dependencies at this time.

9-1

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

10. Installation and Configuration

10.1 Offload Protocol Switch Module

TBD: update after coding.

10.1.1 Installation

+

10.1.2 Configuration

10.2 Sockets Direct Protocol Module

TBD: update after coding.

10.2.1 Installing

+

10.2.2 Configuring

10.3 InfiniBand Transport Module

TBD: update after coding.

10.3.1 Installing

+

10.3.2 Configuring

10-1

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

11. Unresolved Issues

11.1 Offload Protocol Switch Module

No unresolved issues at this time.

11.2 Sockets Direct Protocol Module

No unresolved issues at this time.

11.3 InfiniBand Transport Module

No unresolved issues at this time.

11-1

IBA Software Architecture
Offload Sockets Framework and Sockets Direct Protocol
High Level Design

12. Data Structures and APIs

12.1 Offload Protocol Switch Definitions

To view the data structures and APIs associated with this component, click on here.

12.2 SDP Definitions

To view the data structures and APIs associated with this component, click on here

12.3 InfiniBand OT Definitions

To view the data structures and APIs associated with this component, click on here

12-1

