

Software Architecture Specification (SAS)
Revision – Draft 2
Last Print Date: 4/19/2002 - 9:01 AM
Copyright (c) 1996-2002 Intel Corporation. All rights reserved.

InfiniBand™ Linux Operating System Software
SCSI RDMA Protocol

1.1 Architecture Overview

HCA – Host Channel Adapter provided by a HW vendor.

HW Verbs Provider Driver – This is a vendor-specific piece of software that together
with the vendor’s HCA forms a unit capable of implementing the verbs as specified in the
InfiniBand™ specification.

HCA Driver Interface – This interface separates vendor-specific HCA code from code
that is independent of any particular HCA vendor. The code that sits on top of this
interface utilizes the functionality of the verbs without being dependent upon any
particular vendor’s implementation of the verbs.

InfiniBand Kernel-mode Access Layer– This software exports the full capabilities of
the underlying HCA implementations to higher-level software. It exists to provide useful
services that would otherwise be duplicated in the independent upper-level components,
and to coordinate access to shared InfiniBand™ resources (such as the SMI and GSI) that
are needed by multiple upper-level components. The InfiniBand Access component is
envisioned to provide several services:

• Resource Management – This tracks HCA resource usage by upper level
software components. This is useful for cleaning up those resources when/if the
upper level components go away, and for having a means of tracking which upper
level components should have access to which HCA resources.

User-mode HCA Driver Interface

User-mode InfiniBand Access Interface

Subnet
Manager

SRP

HCA Driver Interface

User

Kernel
 Kernel

Agent(s)

SocketsVIPL MPI Middleware
(uDAPL, etc.)

Application(s)

User-mode Verbs Provider

InfiniBand User-mode Access Layer

InfiniBand Access interface

Legend
OSV Components

HCA Vendor Components

InfiniBand Kernel-mode Access Layer
User-level

Proxy Agent

HCA HW

HCA Verbs
Provider Driver

SM
A

/G
SA

IPoIB Other Target
Drivers

IB
PnP

Mgmt.
Svcs

SM
Query

Resource
Mgmt

Connection
Mgmt

Work Request
Processing

Mgmt.
Svcs

SM
Query

Connection
Mgmt

Work Request
Processing

Middleware
kDAPL, etc.

Subnet
Manager

3rd Party Software

• Work Request Processing – Process incoming work requests and dispatch the
work request to the appropriate HCA drivers and handles the dispatching of work
request completion notification to upper-level components. It also notifies
interested upper level components of asynchronous events and errors that are
detected by the vendor’s HCA during its processing.

• Connection Management – Encapsulates the connection management protocol
as defined in Chapter 12 of Volume 1 of the InfiniBand™ specification. This
significantly simplifies the process of forming connections for those upper-level
components that require them, and coordinates access to the GSI amongst those
components.

• SM Query – Provides an interface to a standard set of subnet administration
queries regarding the subnet configuration.

• Management Services (SMI/GSI QP Access)– Coordinates access amongst
multiple upper-level components to the management queue pairs provided on
each port of the vendor’s HCA. This also routes incoming SMPs and GMPs to
the appropriate upper-level components.

• User-level Support Services (Proxy Agent) – Interfaces to the user-mode
InfiniBand™ Access Layer component to support all the services appropriate for
user mode that need a kernel transition. Utilizes resources provided by both the
host operating system and by the HW specific HCA verbs provider driver to
accomplish this. The user-mode InfiniBand Access Layer communicates with the
proxy agent through a set of IO control calls.

• IB PnP – The plug-and-play implementation for InfiniBand™ provided by the
host operating system.

InfiniBand Access Interface – This exports the interface that all upper-level components
within the kernel use to access the functionality provided by an HCA. The Proxy Agent
also uses this interface to support some of the services provided to the user mode access
layer.

Subnet Manager – Provides the basic Subnet Manager functionality as defined in
Volume 1 of the InfiniBand™ specification.

Kernel Agents – Various kernel components provided by the OS vendor that utilize
InfiniBand™.

Middleware – Transport and OS independent software layers that support InfiniBand™
and other RDMA capable transports like iWarp. Also provide an API that is portable
across operating systems.

IB Target Drivers – Provides access to TCAs of various types. One example would be a
driver provided by the host operating system that utilizes the SCSI RDMA Protocol
(SRP) running on top of InfiniBand™ hardware to access InfiniBand™-attached storage.
Another example would be a network driver that implements Internet Protocol (IP) over
InfiniBand (IPoIB).

User-mode HCA Verbs Provider - Vendor-specific software in user-mode to assist
with direct user mode IO (OS bypass) for data transfer operations (DTO).

User-mode HCA Driver Interface - This interface separates user-mode vendor-specific
HCA code from code that is independent of any particular HCA vendor.

User-mode Access Layer – This modules exports capabilities of all the underlying
HCAs that assist in developing upper layer protocols, like VIPL, uDAPL, SM, HCA
Diagnostics etc., providing access to InfiniBand™ pimitives in user-mode. The user-
mode InfiniBand Access Layer is a vendor independent shared library that can be
dynamically loaded by the higher-level software components.

User-mode InfiniBand Access Interface – This is the interface that all applications
running in user-mode use to access the underlying HCA. It attempts to minimize the
level of abstraction of the underlying hardware while simultaneously being independent
of the implementation of any particular vendor’s HCA. It also provides the facilities to
allow multiple applications to share access the HCAs.

Sockets, VIPL, MPI, and other messaging interfaces – user-mode implementations of
all of these messaging interfaces can be built using the User-mode InfiniBand Access
Interface.

Applications – Applications that wish to live “close to the metal” in order to fully exploit
the capabilities of the underlying InfiniBand™ hardware and are willing to use a lower-
level interface for optimum performance can access the User-mode InfiniBand Access
Interface directly.

2. SRP Driver

2.1 Introduction
Host systems require access to remote storage devices across an InfiniBand fabric. The
method used to access these devices is defined by the IO protocol. The SCSI RDMA
Protocol (SRP) developed by the ANSI NCITS T10 working group is designed to take
full advantage of the features provided by the InfiniBand Architecture. In addition, the
SCSI command set is widely used throughout the industry and is applicable to a wide
variety of device types. SRP allows a large body of SCSI software to be readily used on
InfiniBand Architecture and is rapidly emerging as the protocol of choice for block-based
storage. This section describes the architecture of the Linux SRP device driver.

2.2 Overview
Use level processes typically access storage devices through a file system. The Linux
operating system supports a number of file systems. The range of file systems supported
is made possible through a unified interface to the Linux kernel known as the Virtual File
System (VFS). The VFS interface provides a clearly defined interface between the kernel
and the different file systems. VFS maintains internal structures, performs standard
actions, and forwards tasks to the appropriate file system driver.

Process

1

...

Process

2

Process

n
...

User

Kernel

File System

Virtual File System

proc...ext2 msdos minix

Buffer Cache

Storage Device Drivers

Linux File System Components

The central demand made of a file system is the purposeful structuring of data to allow
high performance and randomized access. Linux employs a dynamic buffer cache to
increase the performance of block devices accessed through the file system. In addition
to storage device access through a file system, a process may also access a raw or
character storage device directly, bypassing the file system and buffer cache components.

The storage device drivers provide access to physical devices by abstracting the details of
the underlying hardware interface, for example IDE or SCSI. The SCSI device driver
stack provides access to devices supporting SCSI protocols. The Linux SCSI framework
contains an abstraction layer called the SCSI mid-layer. This layer provides upper-level
drivers and applications with a device-independent set of interfaces to access devices.
The SCSI mid-layer routes IO requests to low-level SCSI Host Bus Adapter (HBA)
specific drivers. Low-level SCSI drivers provide access to devices through particular
HBA hardware interfaces. Multiple low-level SCSI drivers may be loaded at the same
time as required by the underlying hardware. This model simplifies the implementation
of both the hardware-specific HBA drivers (the low-level SCSI drivers) and applications.
The SRP device driver is implemented as a Linux low-level SCSI device driver.

SCSI Core Driver

SCSI Device Type Specific Drivers

Upper-Level

Mid-Layer

Low-Level SCSI HBA Specific Drivers

GenericCD-ROMTapeDisk

Linux SCSI Driver Stack

The SRP device driver differs from traditional low-level SCSI drivers in Linux in that the
SRP driver does not control a local HBA. Instead, it controls a connection to an IO
controller to provide access to remote storage devices across an InfiniBand fabric. The
IO controller resides in an IO unit and provides storage services.

Host

SCSI Mid-Layer

SRP Device Driver

InfiniBand Access Layer

CA Specific Driver

IB Channel Adapter

IO Unit

IO Controller

IB Channel Adapter

InfiniBand Fabric

SRP Device Driver / IO Controller Relationship

The SRP device driver is known as the SRP initiator whereas the service on the IO
controller is known as the SRP target. The SRP Specification created by the ANSI
NCITS T10 working group defines the communication protocol used between the
initiator and the target.

InfiniBand
Fabric

Host IO Unit

IB
 C

ha
nn

el
 A

da
pt

er
IB

 C
ha

nn
el

 A
da

pt
er

IB
 C

ha
nn

el
 A

da
pt

er

IB QPs IB Ports IB Links

IO Controllers

SRP Service

SRP Service

SRP Service

SRP Service

SR
P

D
ev

ic
e

D
riv

er

In
fin

iB
an

d
Ac

ce
ss

 In
te

rfa
ce

SRP Initiator SRP Target
Ports

SRP Target
Devices

SRP Architecture Mapping

The SRP protocol provides transport services to enable a basic client-server model where
an initiator presents SCSI tasks to a target for execution. All operations in this model use
reliable service connections across the InfiniBand fabric. SRP defines the message
format and behavior required to transfer commands and data between an initiator and a
target. SCSI commands and completion status are exchanged asynchronously using
message send operations.

SRP defines a message flow control mechanism that allows a target to limit the number
of requests that may be queued on the target for execution. A target may use this
mechanism to manage internal resources, for example, to dynamically allocate message
buffers among multiple initiators. This allows the target to provide optimal use of limited
resources and improve overall system performance.

In SRP, the target performs all device data transfers to or from initiator memory using
RDMA operations. An initiator allows RDMA access from the target by registering its
data buffer memory. Information describing the registered data buffer memory is
included in the SRP command.

A typical SRP IO transaction is as follows:

1. The initiator builds an SRP request message that contains a SCSI command, a
device logical unit number, and a data buffer memory descriptor, and sends the
request to the target.

2. The target receives the SRP request and performs an RDMA operation to transfer
the initiator data buffer memory contents to or from the device.

3. The target builds an SRP response message indicating the completion status of the
request and sends the response to the initiator.

The initiator can also perform SRP task management operations, for example, to abort a
task on the target. In addition, the target can send messages to the initiator describing
asynchronous events, such as the insertion of new media into a removable device.

2.3 Theory of Operation
The following subsections describe the operation of the Linux SRP device driver.

2.3.1 Load / Unload
A bus driver is present on each host. The purpose of the bus driver is to inform
the host of an InfiniBand attached IO controller that has become available or
unavailable. The Linux bus driver maintains a mapping of IO controller profile
class, subclass, and protocol identifier values to channel drivers. If a channel
driver is not present at the time the bus driver needs to notify it of a new IO
controller, then the bus driver will load the channel driver. The bus driver
delivers add and remove notifications to a channel driver asynchronously through
a function call interface registered with the bus driver when the channel driver is
loaded.

Bus Driver

Channel Driver
init()

register()

add_unit()

5modprobe

2

3

4

Channel
Driver

Interface

IO Controller

1

Channel Driver Load Sequence

1. The bus driver receives notification of a new IO controller.

2. The bus driver invokes a user-level application to load the appropriate channel
driver.

3. The channel driver module is loaded and the driver initialization function is
called.

4. The channel driver registers an interface with the bus driver.

5. The bus driver notifies the channel driver of a new IO controller instance.

2.3.2 Initialization
The Linux SCSI mid-layer provides a generic module initialization routine for
low-level drivers to use. This routine is the first entry point called by Linux to
initialize the driver. The generic init_module() function normally calls the Linux
routine scsi_register_module(), which is a low-level SCSI driver routine to detect
and initialize the hardware controlled by the driver. A Linux low-level SCSI
driver has one chance to call scsi_register_module() to probe for devices and
create device objects. Linux will not properly handle the addition of InfiniBand-
attached IO controllers after the call to scsi_register_module() has been
performed. For this reason, the SRP driver initialization routine is different from
most low-level SCSI driver initializations. The scsi_register_module() is only
called when the driver is certain that it has been informed of all SRP IO
controllers assigned to the host. To achieve this certainty, the SRP driver queues
a timer call to scsi_register_module() a small amount of time in the future, which
sets a grace period after the SRP driver is notified of an IO controller. If another
IO controller is added to the SRP driver during the grace period, the grace period
starts over. If the grace period ends without a new call to add an IO controller,

scsi_register_module() is called allowing the mid-layer to detect devices, and
complete the initialization process.

SRP Device Driver

add_unit()

SCSI Mid-Layer

InfiniBand Access Layer

Subnet
Query

Connection
Manager

2

Query
Callback()

3 4

Bus Driver

1

Connection
Callback()

5

8

scsi_register_module()

6

7

detect()

9

SRP Device Driver Initialization Sequence

1. The bus driver notifies the SRP device driver of a new IO controller instance.

2. The SRP driver issues a subnet query for connection path records.

3. The SRP driver query callback function is invoked.

4. The query callback function issues a connect request to the connection manager.

5. The SRP driver connection callback is invoked.

6. The SRP driver add_unit() function is signaled that the connection is established
which starts the grace period timer.

7. The SRP driver add_unit() function returns to the bus driver.

8. The grace period timer expires without a restart and calls the
scsi_register_module() routine.

9. The scsi_register_module() routine calls the SRP driver detect() function to
determine the number of HBAs.

2.3.3 Connection Management

2.3.3.1 Connection Establishment

A switched fabric may allow several connection paths between a host and an IO
controller. The SRP device driver obtains a list of one or more path records from
the InfiniBand Access Layer and maintains an index into the path record list to
establish a connection to the IO controller. If a path record query times out, the
driver may retry the query. If a connection request times out, the driver may retry
the request on the current path before advancing to the next path record in the list.
If none of the paths is successfully connected, the driver will attempt to acquire a
new list of path records from the access layer from which to restart the connection
process. Once established, a connection will allow normal IO transaction
processing.

2.3.3.2 Connection Failover
If the underlying channel adapter supports automatic path migration (APM) and
multiple paths exist between the host and the IO controller, the SRP device driver
will establish a connection with primary and alternate paths. Otherwise, the SRP
device driver will perform connection error handling and failover in software. If
an unexpected error occurs on an established connection, the SRP device driver
will advance to the next path record in the list if possible and re-initialize the
connection from that point, wrapping back to the beginning of the path list if
necessary. Re-initializing a connection may include loading and enabling a new
alternate path for APM or establishing a new connection through the connection
manager.

2.3.4 Command Processing
SCSI commands are delivered to the SRP device driver through entry points
provided when the driver registers with the Linux SCSI mid-layer. When the
mid-layer has a SCSI command for a device controlled by the SRP driver, the
queue_command() entry point is called with a pointer to a SCSI request structure
as the argument. The SRP driver registers the host buffer memory, formats an
SRP request, and sends it in a message to the target. Included in the request is the
SCSI command and any necessary information describing the host buffer memory
to or from which data will be transferred. The target interprets the request and
executes the command using its local storage resources. Data movement between
host memory and the target is facilitated by RDMA. The RDMA must be
complete before the target sends a reply to the host. The target replies to the host
with a message containing an SRP response. The SRP response notifies the host
that the IO transaction has completed and the completion status. The host buffer
memory is deregistered when the IO transaction completes.

SRP Request Message

Host Target

HW Send ACK

RDMA Transfer

HW RDMA ACK

SRP Response Message

HW Send ACK

SRP IO Transaction Diagram

The SRP device driver is event driven. These events include the following:

• Arrival of a SCSI command from the mid-layer
• Completion of a message send operation from the InfiniBand Access Layer (send

messages are SRP requests or responses destined for the target)
• Completion of a message receive operation from the InfiniBand Access Layer

(received messages are SRP responses or requests from target)
• Detection of error conditions

Note that because send and receive operations are independent, involve other
software layers, and may utilize different completion queues, it is possible to
receive an SRP response message from the target before the corresponding SRP
send message request has completed. The SRP driver design must allow for this
scenario.

2.3.5 Asynchronous IO
The SRP device driver has the ability to process multiple IO requests
simultaneously. For each IO request from the SCSI mid-layer, the SRP driver
maintains a data structure for the duration of the request’s life – that is, from the
time the request arrives until the time the completion response message arrives
from the target. The data structure contains details about the request and its state.
The address of this structure serves as the SRP driver context value.
Asynchronous completion events use this context to associate the completion with
one of perhaps many outstanding tasks.

2.3.6 Transaction Ordering
The SRP device driver provides an interface to random and sequential access
devices. The SRP device driver does not maintain a different transaction ordering
policy based on the class of device, it simply passes IO requests and responses
through between the host client and device server. Therefore, to provide a uniform
internal design and mode of operation, order is strictly maintained for all requests

and responses processed through the SRP driver. Multiple IO requests may be in
process simultaneously, allowing the target device, adapter, or SCSI device class
driver to reorder requests based on the policy of that layer to maintain data
consistency.

2.3.7 Multithreading
The SRP device driver has the ability to process multiple IO requests
simultaneously; therefore, critical data structures must be accessed using thread-
safe mechanisms. The design of the SRP driver will minimize the extent of any
locks to increase parallelism on SMP systems and to achieve maximum CPU
effectiveness (IOps / % CPU utilization).

2.3.8 Interrupt Processing
The SRP device driver differs from traditional low-level SCSI drivers in Linux in
that the SRP driver does not control a local HBA. Instead, the SRP driver controls
a connection through an InfiniBand host channel adapter. Hardware interrupts
from the channel adapter are handled by the HCA specific driver and delivered to
the InfiniBand Access Layer. The access layer notifies the SRP driver of these
events through a registered set of callbacks. The execution priority level of the
callback is determined by the specific event and notification mechanism used by
the InfiniBand Access Layer.

2.3.9 Error Handling
The SRP device driver can encounter errors from several sources. For example,
errors may originate from the InfiniBand access layer, the IO protocol, the
operating and IO subsystem interfaces, and the underlying IO device.

2.3.9.1 Transport Errors
The SRP device driver establishes connection-oriented, acknowledged channels
that provide a reliable interface to remote IO controllers. Any transport errors
occurring on the channels will result in the migration or destruction of that
connection. When a transport error occurs, the SRP driver will attempt to failover
to a new connection and resume IO processing.

2.3.9.2 Invalid Requests
It is assumed that the target is properly designed and implemented such that
invalid messages are not received. If an invalid request or response message is
received, the protocol engine will respond with the corresponding protocol error
notification message to the Linux SCSI mid-layer.

2.3.9.3 Device Errors
Errors from the underlying devices are considered a natural part of IO processing.
Such errors are converted into the appropriate error condition status and delivered
to the Linux SCSI mid-layer for further processing. The SRP device driver makes
no assumptions about the underlying device or the intended use of that device.
The SRP device driver does not retry failed IO transactions. The underlying
device, or the SCSI mid-layer may perform retries.

2.3.10 OS Interfaces
The SRP device driver is implemented as a Linux low-level SCSI driver. As
such, the SRP device driver conforms to the standard OS low-level SCSI driver
interfaces.

2.3.11 InfiniBand Access Interfaces
The SRP device driver resides above the InfiniBand Access layer and requires
capabilities:

• Dynamically loaded on demand.
• Notification of IO controller addition or removal.
• Obtain an IO controller profile.
• Obtain the service entries for an IO controller.
• Obtain a list of path records to an IO controller.
• Create a reliable connected channel to an SRP target port.
• Send and receive SRP messages asynchronously.
• Separate or combined send and receive completion queues.
• Completion processing using callbacks or polling.
• Register / Deregister physical memory for remote access.
• Notification of channel errors.
• Notification of port state changes.

